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Abstract

Navigation in deep space, far away from Earth, is an ongoing challenge and research

topic. While spacecraft near Earth have a number of readily available methods for

navigation (including GPS and radio ranging), far away from Earth it is more challenging

for spacecraft to determine their position. In the absence of external reference objects

that can be used to estimate position (for instance nearby planetary objects), the current

state-of-the-art for navigation in space relies on NASA’s Deep Space Network to provide

Earth-based position measurements of the spacecraft. This means of navigation suffers

from limitations, including limited availability, high cost, and decreased accuracy far

from Earth. Consequently, alternative means of navigation are of interest.

X-ray navigation, or XNAV is a proposed means by which spacecraft can navigate

using signals generated by astrophysical signal sources. In particular, x-ray pulsars have

been proposed as a naturally occurring signal source which could be used to generate a

position, navigation and timing (PNT) solution in space. The basic concept in XNAV

is that a spacecraft can compute a PNT solution based on time of arrival (TOA) mea-

surement of signals from x-ray pulsars. Some x-ray pulsars, in particular millisecond

pulsars, have extremely precise timing characteristics, with timing stability comparable

to modern atomic clocks. If the TOA of signals from several millisecond pulsars could

be measured, these TOAs could be used to compute a PNT solution for the spacecraft.

The basic concept of XNAV is somewhat analogous to GPS, in that the position of

the user is determined by measuring multiple signal TOAs generated by sources with

precisely known timing characteristics.

While this technique has been proposed numerous times in literature, there are

still several implementation challenges which must be overcome in order for XNAV to

become a viable navigation technology. In this dissertation, we address some of the

major challenges associated with implementation of XNAV.

The first challenge addressed in this dissertation is the development of a method of

determining the signal time of arrival based on measurements of x-ray photon arrival

times. This challenge is at the heart of any XNAV implementation, because in order

to use pulsar signals as PNT signals, the time-difference of arrival of the signal must
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be measured. The estimation of time-difference of arrival from pulsar signals is compli-

cated by the fact that pulsar signals are incredibly weak, resulting in a signal-to-noise

ratio near zero. In this dissertation, we develop a recursive algorithm which estimates

the time-difference of arrival of a pulsar signal which is based upon adaptive filtering

techniques.

The second challenge addressed in this dissertation is the problem of data associ-

ation. Photons measured by an x-ray detector in space have no way of knowing with

certainty the origin of the photons. The presence of the uniform x-ray background re-

sults in background photons diluting an already extremely weak signal. If the detector’s

attitude is known, then the attitude may be used to determine which photons are likely

to have originated from a signal source of interest. However, the reliance upon attitude

to correctly associate the photons with the correct signal source causes the position and

attitude estimates to be coupled. In this dissertation, we present an algorithm which

addresses this coupling of the attitude and PNT solutions for the XNAV problem. A

joint six degree-of-freedom position and attitude estimator is developed based on the

joint probabilistic data association filter. We further demonstrate the effects of attitude

uncertainty on the accuracy of the PNT solution using Monte Carlo simulations.
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Chapter 1

Introduction

Navigation is among the oldest problems faced in engineering. While the Egyptians

were building pyramids in Giza, Polynesians were learning how to use stars to navigate

between islands and how to determine if they were near land by studying the waves and

observing the patterns of the birds. Meanwhile on the island of Crete, the Minoans were

building ships that sailed to Egypt, using the stars as navigational aides. In ancient

civilizations around the world, people were learning to use natural landmarks as tools

to determine their location.

As the centuries went by, civilization became more skilled at the art of navigation.

Tools such as the cross-staff (a precursor to the modern sextant) and the compass,

along with basic nautical charts began to enable exploration further and further away

from land, and eventually allowed for the great explorers to make voyages all the way

around the world. A major breakthrough came with the invention of the pocket-watch

in 1761. It had long been known that accurate knowledge of time was necessary to

accurately determine longitude. The problem was that clocks tend to drift. Before

the invention of the pocket-watch the best available technology for time-keeping was

the hour glass, which tended to be less accurate aboard ships that pitch and roll on

the waves. The pocket-watch solved this problem and allowed sailors to accurately

determine their longitude as well as latitude by observing the position of the sun. This

development underscores an interesting fact about many navigation problems: In order

to know where you are, you also must have an idea of what time it is.

In the 20th century, vast strides were made in the art of navigation thanks to the
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use of electronics and radio. By generating our own navigational signals rather than

relying on those which occur naturally, it became possible to determine position to a

much higher degree of accuracy. These man-made navigational signals ultimately gave

birth to the first Global Navigation Satellite System: GPS.

Figure 1.1: Ancient navigational
techniques included accurate mea-
surement of the position of stars.
[1, 2]

In modern navigation we tend to rely heavily

on man-made “beacons” or reference points to de-

termine our position. We use street signs to de-

termine where we are on a map, we use GPS sig-

nals to determine where we are anywhere on Earth,

and airplanes use a vast network of radio naviga-

tional beacons to determine their positions. We

tend to use artificial signals because they’re con-

venient; we can design the signals to be optimized

for navigational purposes. However, before the ad-

vent of modern navigational technology, explorers

had to rely on natural signals, such as the sun, the

stars, and the Earth’s magnetic field. These navi-

gational beacons do not always offer the same ease

and convenience as their man-made counterparts,

but they do offer a certain universal availability

and reliability which man-made signals lack.

The dawn of the space-age required naviga-

tion in a new domain. Traditionally, navigation in

space has relied on man-made signals, just as most

other modern navigation does. However, the vast-

ness of space cannot be overstated, and this poses

a problem for man-made signal based navigation.

On Earth, it is feasible (if expensive) to broadcast

navigational signals over the entire planet using

satellites. This simply is not possible in space due to its vastness. The best we can do

is to broadcast highly targeted navigational signals directly at the spacecraft that need

to navigate, but even this becomes challenging as spacecraft explore further and further
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away from Earth. As we continue to explore the outer boundaries of the solar system

and beyond, it may well be that our ability to broadcast man-made navigational signals

is not able to “keep up” with our pace of exploration. Consequently, we again turn

to the ancient means of navigation: Using the signals and beacons which are already

there, rather than trying to create our own. This is the basic idea of this work. We are

seeking ways to use naturally occurring signals in outer space to determine a position,

navigation, and timing (PNT) solution.

1.1 Deep Space Navigation: Current Techniques

Navigation in deep space, or regions beyond geosynchronous orbit (GEO), presents an

ongoing research challenge [3]. While spacecraft between low Earth orbit (LEO) and

GEO have a wide variety of navigational aides available to them, outside of GEO, navi-

gation is much more challenging. This is because most of the current techniques used for

navigation in space rely on some form of Earth-based measurements to fix the position

of the spacecraft. This becomes more and more difficult to do as the spacecraft travels

farther from Earth. In particular, while it is fairly simple to measure a spacecraft’s dis-

tance from Earth in the radial direction, measuring its crosstrack (tangential directions)

is more difficult because it relies on accurate measurements of the spacecraft’s angular

position from Earth. The effect of errors in this measurement increases linearly with

distance between Earth and the spacecraft. For instance, to determine the position of a

spacecraft near Pluto, the angular position of the spacecraft would have to be measured

to an accuracy of 1 nanoradian in order to achieve an accuracy of 1 kilometer in the

calculated crosstrack.

NASA’s Deep Space Network (DSN) is capable of measuring the angular position

of spacecraft to approximately 0.33 nrad [4]. However, relying on the DSN to mea-

sure position of spacecraft in deep space has multiple limitations. The fundamental

limitation is that even with extremely high accuracy angular measurements, the error

in position measurement will always increase linearly with distance away from Earth.

Consequently, for a given angular accuracy, the resulting errors in position may become

unacceptably large at great enough distances from Earth. In addition to this funda-

mental limitation, navigation via the DSN is limited practically by time availability.
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The number of spacecraft that rely on the DSN for navigation has steadily increased

over the last several decades, in part due to new planned missions, and in part due

to old missions outliving their life expectancy (e.g. Voyager I and II). As more and

more spacecraft rely on the DSN for positioning, it will become increasingly difficult

to schedule navigational updates. In order to measure a spacecraft’s angular position

to the accuracy of 0.33 nrad, the DSN uses Very Long Baseline Interferometry, which

requires approximately 1.25 hours of observation time to perform the measurement [4].

This long observation time makes navigation via the DSN difficult to schedule, and

increasingly impractical.

A recent mission which exemplifies the current state-of-the-art capability of space-

craft for navigation in deep space is the New Horizons mission and the recent Pluto and

Ultima-Thule flybys. During the spacecraft’s approach to the systems, the spacecraft’s

position error was determined by tracking data from the DSN. In order for a successful

acquisition of the targets to occur, the spacecraft’s ephemeris error had to be on or be-

low the order of several thousand kilometers. The tracking data provided by the DSN

was accurate to about one thousand kilometers [5].

While the DSN produces accurate navigational solutions for missions such as New

Horizons, alternative navigation techniques which reduce or eliminate dependency upon

the DSN would enable more accurate navigation very far from Earth, and more readily

available navigation solutions for spacecraft. Autonomous (self-contained) navigation

systems which rely on naturally occurring astrophysical signals have been proposed as an

alternative navigation technique which could augment or even replace navigation via the

DSN. This technique is often referred to as “signal of opportunity” or “opportunistic”

navigation.

1.2 Opportunistic Navigation

Navigation via Signal of Opportunity (NAVSOP) generally refers to a navigation tech-

nique which uses signals native to the operating environment to estimate a position,

navigation and timing (PNT) solution. A wide variety of signals have been proposed

for use with NAVSOP, including signals from WiFi [6], cell-phones [7], pulsars [8, 9], and

γ-ray bursts [10], to name a few. The primary advantage of NAVSOP techniques is that
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they do not rely on an external infrastructure designed for navigation measurements,

but rather opportunistically use signals which are already present in the environment.

The advantage of being able to operate independently of an external infrastructure is

especially apparent in the case of deep-space navigation.

The fundamental idea behind NAVSOP is to use signals native to the environment

to estimate the position of the user. This can be achieved by measuring the time-

difference of arrival, or TDOA of the signal, at two separate points in space (the user

and the origin of the navigation coordinate frame). Mathematically, TDOA is defined

as follows:

τO→A(S) = tA − tO (1.1)

where tA is the time-of-arrival of a specific feature of the signal at the spacecraft A,

and tO is the time-of-arrival of that same feature of the signal at the origin.

NAVSOP techniques can be broadly broken down into two classes; absolute nav-

igation and relative navigation. Absolute NAVSOP produces an absolute navigation

solution for the user, and requires that the signal is known a priori. In this case, the

signal values at the origin may be stored onboard the spacecraft before departure. Then,

no matter how far away the spacecraft is from the origin, it will always have the value of

the signal at the origin available for computing the TDOA. This scenario is illustrated

in Figure 1.2.

In the case where the signal is not known a priori, as is the case with quasi-periodic

signals, absolute NAVSOP may still be possible. Here, the limiting factor would be

the bandwidth required to transmit a time history of the signal from the origin to the

spacecraft, especially if the spacecraft is far away from the origin.

However, even if the signal cannot be known a priori, it may still be useful for

relative NAVSOP, or computing the relative position between two vehicles that are

relatively close together. The bandwidth limitation is only a real problem if the distance

between the origin and the spacecraft is very large. If multiple spacecraft are close to

each other, then the signals could easily be passed from user to user, allowing the

cooperating spacecraft to compute their positions relative to each other. As long as one
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of the spacecraft knows its absolute position, the other cooperating spacecraft could use

that absolute position combined with the relative navigation solutions to compute their

respective positions. One such scenario is illustrated in Figure 1.3.

It is apparent from examination of Figures 1.2 and 1.3 that even though the signals

and applications of the two methods may be different, both depend on being able to

generate a measurement of TDOA. If, without loss of generality, one considers the

absolute NAVSOP case only, then the key equation relating TDOA to the position

vector is given by:

y(x) =


τ
A(1)
O
...

τ
A(N)
O

 =


1
c

(
`(1)
)T

1
...

1
c

(
`(N)

)T
1


[
rAO

δtA

]
(1.2)

where y(x) is a vector of measured values, related to the PNT state vector x. The

variable τ
A(1)
O is the time-difference of arrival of the signal generated by signal source 1

between the spacecraft A and the navigation frame origin O; c is the speed of light; `(1)

is the line-of-sight unit vector to source 1; rAO is the position vector to the spacecraft and

δtA is the spacecraft’s clock error. Given four TDOA measurements of signals arriving

from different directions, the position rAO and clock offset δtA of the user can be fixed.

1

At first glance, this problem bears many similarities to the differential GNSS mul-

tilateration problem. However, by the time they reach our solar system, most astro-

physical signals are extremely weak. The signals are so weak, in fact, that instead of

a continuous signal corrupted by noise, the signal is composed of individual, discrete

photons of electromagnetic energy.

The extremely weak signal characteristics present multiple challenges which must

be overcome in order for this method of navigation to be functional. Three of these

challenges are addressed in this dissertation: Estimation of TDOA from very weak

signal sources (Chapter 3), estimation of the spacecraft’s attitude from photon arrivals

(Chapter 4) and the problem of data association, or correctly determining the origins

of measured photons (Chapter 5).

1A complete table of notation used in each chapter is given at the end of the chapter.
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1.3 Prior Work

In [11], the idea of navigation using pulsars as navigational beacons is proposed. Since

then, numerous papers examining the technical issues associated with navigation via

pulsars have been written [9, 8, 12, 13, 14, 15, 16, 17]. As discussed above, it is of

fundamental importance to be able to estimate the TDOA of the signal being used. If

the signal is strong enough, then the TDOA may be estimated with reasonable accuracy

simply by taking the cross-correlation between the signal observed at the spacecraft, and

the signal at the navigation frame origin, and finding the time offset at which the cross-

correlation is maximized. However, with weak signals, this method is not viable. Much

of the work done on the subject of pulsar navigation is specifically focused on the task

of estimating the TDOA from a very weak signal.

Epoch folding refers to the technique used by astronomers to build the pulse profile

for a pulsar. Because the signals produced by pulsars are very weak, for any one period

of observation of the pulsar, the observed signal will not resemble the actual pulse

profile, (as discussed further in Section 2.2). In order to build an accurate pulse profile

of the pulsar, many observations of the pulsar are added on top of each other so that

eventually, the true pulse profile of the pulsar is obtained. In order to perform this

operation, two things must be known a priori : The trajectory of the observer during

the measurement (so that the effect of the motion may be removed from the photon

arrival time), and the period of the pulsar being observed (so that the measurements

are folded over using the right time period).

In [15] this technique of “folding” the signal on top of itself is used to determine the

pulse TOA, or more specifically the pulse phase difference between the user and another

location for PNT purposes. This method suffers from two primary limitations. First, it

requires that the trajectory of the user be known before the measurements are made.

This means that the user must have at least some idea of their initial velocity in order to

effectively use epoch folding. While this is not a completely unreasonable requirement,

it does preclude its use in a “cold-start” situation (i.e., when a spacecraft is navigating

with no prior trajectory knowledge). Secondly, this method requires precise knowledge

of the frequency of the pulsar being observed. This constraint makes the use of epoch

folding on anything other than a pulsar (e.g. an asynchronous x-ray source) challenging.
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Another approach for estimating pulse phase applies a maximum likelihood estima-

tor (MLE) to estimate the phase offset and Doppler shift of the pulsar between the

user and some other location [14, 13]. The pulsar navigation demonstration mission

SEXTANT used such an MLE approach for determining pulse phase [17, 18, 19]. This

method offers the distinct advantage over epoch folding in that it does not require that

the trajectory of the spacecraft be known a priori. However, similar to the epoch folding

method, MLE estimation of phase difference requires that the pulse profile be known to

a high degree of accuracy beforehand. Another possible disadvantage of MLE estima-

tion is that, as pointed out in [14], the complexity of calculations increases significantly

as the observation time grows.

Both MLE estimation and epoch folding make use of the kinematic state of the

vehicle at the start of the observation time to produce their estimates of TDOA. Ad-

ditionally, some implementations of the MLE approach, such as [17] also estimate a

frequency (Doppler) shift of the signal along with TDOA, which yields an estimate of

both position and velocity from the observations. Further derivatives of position could

be added to an MLE estimation scheme, but at the cost of increased computational

expense.

In [12], adaptive filters are proposed as a means of estimating the TDOA of a pulsar

signal. The authors of [12] show that adaptive filters such as LMS, nLMS, and RLS

may be used to compute the correlation vector between a measured and desired signal.

1.4 Problem Statement and Contributions

In order for x-ray navigation to function as a viable alternative to navigation via tradi-

tional means, there are several challenges which need to be overcome. The two challenges

that are addressed in this work are outlined below.

The first problem addressed by this work is the problem of time-difference of arrival

estimation using extremely weak signals. We present a recursive algorithm which esti-

mates the TDOA for very weak signals, in particular signals which consist of individual

photon arrivals. We show that this algorithm is capable of estimating TDOA with mean

error approaching theoretical limits on accuracy derived in previous work.

The second problem addressed in this work is the problem of data association. The
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ability of any TDOA estimator to function is dependent upon its ability to correctly

associate incoming photons with the correct signal sources. We show that the qual-

ity of the time-difference of arrival estimate is inherently coupled to the quality of the

spacecraft’s attitude solution. We then derive a technique through which attitude may

be estimated based on photon measurements. Finally, an estimation technique is pre-

sented which uses a probabilistic data association technique to address the problem of

data association, and allows the joint estimation of attitude and range.

1.5 Dissertation Organization

The remainder of this dissertation is organized as follows. In Chapter 2, various astro-

physical signals of opportunity which could be used for PNT purposes are presented,

and the statistical properties of these signals are derived. Chapter 3 presents a recursive

range estimation algorithm which allows the time-difference of arrival, and consequently

range to be estimated from extremely weak signals. The problem of attitude determi-

nation is discussed in Chapter 4, and the equations necessary to estimate a spacecraft’s

attitude from photon angle-of-arrival measurements are derived. The algorithms from

Chapter 3 and Chapter 4 are combined in Chapter 5 to form a joint range and attitude

estimator, and it is shown that the problem of position estimation and attitude estima-

tion are in fact coupled. Finally, in Chapter 6, some of the remaining challenges which

are not addressed in this dissertation are discussed, and some results are presented from

preliminary efforts at addressing some of these challenges.

Nomenclature

A table of nomenclature is included here as well as at the end of each chapter.

Data Association

N Number of signals being tracked

Physical Constants

c Speed of light (km/s)
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Signals and Measurements

ti Time-of-arrival measurement of photon i (seconds)

Si ith signal source

State Estimation
ρ
A(S)
t Range to object A, at time t, along line-of-sight vector to source S (km)

rAt Position of A, at time t (km)

O Denotes the navigation frame origin

τ
A(S)
t Time-difference of arrival of signal from signal source S measured be-

tween vehicle A and navigation frame origin (seconds)

x State vector

yt,a Measurement of scalar quantity a

[·]− Indicates a priori value

[·]+ Indicates a posteriori value

·̂ Indicates estimated value

a Indicates vector quantity

a Indicates scalar quantity

Misc
A,B Indices to designate spacecraft(s)

`(S
i) Unit vector pointing towards ith signal source
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Chapter 2

Mathematical Models of

Astrophysical Signals of

Opportunity

At the heart of any opportunistic navigation scheme is a naturally occurring signal

which can be used for navigational purposes. In this chapter, the types of signals which

can be used for signal of opportunity navigation in space are discussed. Then, we will

develop mathematical models for the one signal on which we will focus for the remainder

of this dissertation, namely x-ray pulsars. These mathematical models are important

because they will enable us to develop PNT algorithms that use these signals in later

chapters of this dissertation.

2.1 Signal Sources

The first question that must be asked if we wish to formulate a signal of opportunity

navigation scheme is: What signals are available? It turns out that naturally occurring

signals are relatively plentiful in outer space, though not all of them are useful.

This leads to the next question: What sorts of signals are most useful for navigation?

There are two attributes that make a signal particularly useful for navigation. One is

that the signal should contain some form of spatial variation, which may be used to
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derive information about the position or orientation of the spacecraft. The higher

the information content of the signal, the more useful it is for navigational purposes.

The other is that the signal must be strong. The signal might have an abundance of

information, but if it is too weak to be detected by the spacecraft, then it is of little use

for navigational purposes.

In this work, we have restricted our attention to electromagnetic signals of wave-

lengths significantly shorter than visible light, particularly hard x-rays and soft γ rays,

containing photons ranging in energy from 2-100 kiloelectron-volts (keV). While electro-

magnetic signals of all wavelengths exist in space, the higher frequency/lower wavelength

signals are of particular interest because they can generally be detected with smaller

detectors than what would be required to detect longer wavelength signals, such as ra-

dio signals. Additionally, the hard x-ray/soft γ ray window represents a sort of “sweet

spot” in the electromagnetic spectrum. On the low end of this range, the cosmic x-ray

background becomes more intense, and tends to drown out signals of interest. On the

high end of this range, each individual photon is so energetic that even a relatively high

energy signal consists of relatively few photons. As will be shown in Section 2.2, the

number of photons measured from a signal directly impacts the signal-to-noise ratio

(SNR), and fewer photons leads to a lower SNR, even if the individual photons are very

energetic.

Given this energy range, there are a few classes of signals which are available for

navigational use. Some of these signals are discussed below.

2.1.1 Gamma ray bursts

Gamma ray bursts (GRBs) are the most energetic events that have been observed by

man. It is estimated that a GRB releases more energy in a few seconds than our sun is

expected to release during its entire lifetime [20]. GRBs are thought to be caused during

supernovae, when massive stars collapse to form neutron stars or black holes. These

extremely energetic events produce a large amount of radiation, including gamma rays

and x-rays.

From Earth, a GRB appears as a bright spot in the the gamma-ray sky which appears

and then fades over time during a period referred to as the “afterglow.” The duration

of GRBs is highly variable, ranging from less than one second to over 100 seconds [21].
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Additionally, it has been shown that the temporal profiles of GRBs are highly variable,

with no two GRBs that are alike [22].

GRBs are of interest particularly because they are so energetic. This makes them

easier to detect amid the sources of background noise. However, GRBs would be difficult

to use for navigation because of the nature of the signal. While the time-varying nature

of the signal contains information which could be used for navigation in theory, this is

difficult in practice because it is impossible to predict the time, location, or profile of

a GRB before it occurs. An analogous situation would be trying to use a signal from

a GPS satellite without knowing where the GPS satellite is, or what the GPS signal

time-history is supposed to be.

One way GRBs could theoretically be used for navigation is in a cooperative, rela-

tive navigation framework [10]. In such a framework, multiple spacecraft would work

together and share information about incoming GRB signals, allowing the spacecraft to

compute their positions relative to each other.

2.1.2 Asynchronous x-ray sources

Asynchronous x-ray sources are another class of signals which could be used for navi-

gation purposes. In this class of signals signals, we include any point source of x-rays

in which the time variation of the x-ray flux is either constant or asynchronous, i.e. the

changes in flux do not exhibit a strong periodic nature. This definition encompasses a

very wide range of sources, including most main-sequence stars [23], x-ray binaries [24],

x-ray bursters [25], and quasars [26].

This class of signals has the advantage over GRBs in that they originate from a spe-

cific location which may be known a priori. Consequently a spacecraft can know ahead

of time where to look for these signals. However, like GRBs, the temporal variation of

these signals cannot be known in advance. Consequently, to be used for positioning ap-

plications, these signals would also have to be used in a cooperative, relative navigation

framework.
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Figure 2.1: Pulsar signal profiles from four x-ray pulsars (J0437-4715 [27], B1937+21
[28], B1957+20 [28], B1821-24 [29] ). As shown here, each pulsar has a unique pulse
profile, period, photon flux, and unpulsed signal component.
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2.1.3 Pulsars

Pulsars, short for pulsating radio star, are highly magnetized spinning neutron stars

[30]. The rotation of the pulsar and its magnetic field cause it to emit a beam of

electromagnetic radiation which sweeps across the sky, much like the beam from a

lighthouse. If this beam of radiation happens to hit our solar system, the result is a

periodic signal which may be observed in several spectra, including radio, visual, x-ray

and gamma-ray.

Several pulsar pulse profiles are illustrated in Figure 2.1. Some millisecond pulsars

have a period stability comparable to that of modern atomic clocks [31]. The precise

period of pulsars make them ideal candidates for NAVSOP because a spacecraft could

have a priori knowledge of the signal it is trying to use. However, pulsar signals have

the disadvantage of being relatively weak, resulting in a relatively low signal to noise

ratio (SNR) [16, 8], as will be shown below. In this dissertation, we exclusively consider

pulsar signals, although many of the techniques developed here could be extended to

other signal sources. Thus, the remainder of this chapter is dedicated to developing

mathematical and statistical models for pulsar signals.

2.2 Signal properties and statistics

Regardless of the signal of opportunity used to determine position, the end goal is the

same. The spacecraft must have a way to measure or estimate the difference between

the signal’s arrival time at the spacecraft, and the signal’s arrival time at the navigation

frame origin. This quantity is referred to as the time-difference of arrival, or TDOA. In

order to understand why this quantity is difficult to measure, it is beneficial to discuss

the nature of the signal.

2.2.1 Methods of determining time difference of arrival

The simplest way to measure time-difference of arrival might be to measure the time

at which come feature of the signal occurs (a sharp peak or local maxima in the signal,

for instance). By comparing the time at which those features were measured at the

spacecraft and at the navigation frame origin, the TDOA could be simply measured by
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taking the difference between the time at which these features were observed. However,

this rather simplistic approach is unlikely to yield the best estimate of TDOA, because it

generally will not make use of all of the available information in the signal. Additionally,

any error or noise in the measurement of the time at which a feature is measured will

lead to error in the estimate of TDOA. If only a few features are measured, this error

could be quite large depending on the error in the measurements.

A more intelligent method of estimating the time-difference of arrival is to use the

cross-correlation method. The correlation function between two time-varying signals,

λA (t) and λO (t) is defined as follows.

cλA,λO [p] =
∑
i

λA (t+ iT )λO (t+ iT + p) (2.1)

If we consider the correlation between a signal, λO and a delayed version of that

17



signal λA, the value of the delayed version of the signal may be written as:

λA (t) = λO (t+ τ) (2.2)

In the most basic terms, the correlation is a measure of the “similarity” between

two signals. When written as in Equation (3.1), the correlation function measures the

similarity between two signals as a function of the time delay of one of the signals. A

basic pictorial illustration of the correlation function is shown in Figure 2.2.

It may be shown that the correlation function between a signal, λO and a time-

delayed version of that signal, λA as defined in Equation (2.2), is maximized at the

value of the delay between the two signals [32, 33]. This is illustrated in Figure 2.2:

The correlation function is maximized at the delay value which causes the two signals

to perfectly overlap.

argmax [cλA,λO [p] ] = τ (2.3)

Therefore, if we could compute the cross-correlation between the photon flux at the

spacecraft and at the origin (or, in the case of pulsar signals, we may know the flux rate

at the origin ahead of time), then we could easily estimate the TDOA between the two

signals simply by finding the location of the maxima of the correlation function.

Unfortunately, we cannot measure the flux rate perfectly. In fact, we cannot even

measure the flux rate at all, at least not in a direct sense. What we can do is measure

the number of photons that hit a detector over a given period of time. As would be

expected, there is a direct relationship between flux rate (power per unit area) and

number of photons that hit the unit area. In the most ideal case, we might say that the

number of photons we measure during a given instant in time is directly proportional

to the flux rate. However, this assumption breaks down under certain conditions.

2.2.2 Poisson Processes: A Practical Example

To understand why we cannot use this direct linear relationship between number of

photons and flux rate, an analogy may be useful. Imagine that it’s raining, and we’re
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trying to measure how much water is hitting the ground per unit area. Imagine further

that all the drops are the same size. Now, suppose that we go outside, and measure

an area on the ground. We then try to count the number of drops that hit that area

over a given period of time, say one minute. If the area is big enough, and we count the

drops accurately, we might be able to get a decent estimate of the rate at which water

is falling from the sky (in gallons per square mile, or whatever ratio of volume to area

units we wanted). For instance, if we measured out a 1 square foot area, and it was

raining lightly, we might count 30 drops hitting that area over the length of one minute.

We could do the appropriate calculations and make assumptions about drop size to get

a flux rate in volume of water per unit area per second.

But now, say we want to track how fast the rain is falling as a function of time.

Moreover, we want our time resolution to be one second. How would we do that? We

could count the number of rain drops we see per second that hit our square foot of

ground. We were only seeing 30 drops per minute, which means that on average, we

saw 0.5 drops per second. But, we cannot actually see half drops. This means that

during some one-second periods, we might see one drop, while during other one-second

periods we might see none. Some seconds we might see two or three drops, and at other

times we might go for several seconds without seeing a drop.

If we were to do the same process that we did before (dividing drops counted by time)

for each one second time period, we would get a rain-fall rate that varies drastically with

time. At some points we would estimate that our rain-fall rate was torrential, while

at other seconds we would estimate that it was not raining at all. Clearly, it would be

incorrect to estimate the rain fall rates for a given second based solely on the number of

rain drops we count in that particular second. But this raises the question: If we cannot

estimate the rain-fall rate over a short period of time simply by counting the number

of raindrops, how can we estimate it? We could take the average of all our rainfall

estimates over time, but then we are right back to what we did at the beginning. The

average will definitely be more accurate, but then we lose all the temporal variation

that we were trying to get by measuring more frequently.

The problem of estimating photon flux rate is essentially the same problem. In

estimating the flux rate, we are able to count photons over a length of time. We want

the length of time over which were counting to be very small, so that we capture every
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variation with high temporal accuracy. (We need high temporal accuracy so that we

can accurately estimate the distance between the two spacecraft.) But, as we make our

time windows smaller and smaller, we see fewer and fewer photons per time window.

In many cases, the average number of photons we will see per time bin is well below

one, meaning that at many times, we will see no photons. And yet, we know that the

flux rate at that point in time is not zero. How do we estimate the flux rate from

this data with as high of temporal resolution as possible, without the drastic variations

associated with small time bins?

2.2.3 Statistical Models

In order to answer this question, we must first have a better understanding of the

statistics of the signal we actually measure; that is, the statistics of photon arrival

numbers and arrival times.

Photon Count Statistics

Photon arrival times are governed by a Poisson process. More specifically, photon

arrivals are a non-homogeneous Poisson process, because the flux varies as a function of

time. Poisson distributions model the number of times an event is expected to occur in a

given window, given a mean arrival rate. It is the limiting case of a binomial distribution,

as the number of trials goes to infinity. The binomial distribution itself represents a

sum of Bernoulli trials (i.e. coin flips). Thus, we can think of the Poisson process as

modeling each infinitesimally short instant in time as a Bernoulli trial. That is, at each

instant in time, we flip a weighted coin. The result of that coin flip determines whether

or not we see a photon in that infinitesimal segment of time. The coin is weighted such

that, over the sum of Bernoulli trials, the expected value of number of heads is equal to

the expected photon arrival rate.

The Poisson distribution is expressed as:

Pr
[

Λ̃k = N |λk
]

=

{
e−λk (λk)N

N ! {N ∈ Z|N ≥ 0}
0 N < 0

(2.4)
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where

• Λ̃k = N is the number of events observed in a time window

• λk is the number of events expected to occur in that time window k

We note that N is restricted to positive integer values, which makes sense based

on our understanding of what the Poisson distribution represents (we can only see an

integer number of photons, and we can never see fewer than zero). We also note,

however, that while λk must be positive, there is no restriction that it be an integer.

Again, this makes sense based on our understanding of what the distribution represents:

we may expect to see a non-integer number of photons over the given time interval, on

average.

We will use the shorthand Λ̃k ∼ Pois [λk] to indicate that the random variable

Λ̃k follows a Poisson distribution. Below are some relevant properties of the Poisson

distribution:

E
[
Λ̃k

]
= λk (2.5a)

var
(

Λ̃k

)
= λk (2.5b)

Another relevant property of the Poisson distribution is the fact that it does not

depend on what has happened at previous time steps. 1 This means that the proba-

bility of seeing a given number of photons at a given time step, given a certain flux, is

independent of how many photons were seen at the previous time-step.

As noted above, the arrival of photons from a time-varying signal source is a non-

homogeneous Poisson process, that is, it varies with time. We may still use the Poisson

distribution to model the photon arrival statistics over a given time interval, but we

note that the expected number of photons λk is actually the integral of the signal over

the time window. Mathematically:

1It will be noted that the Poisson distribution is not memoryless in the truest statistical sense.
However it is “memoryless” in the sense that the number of events observed over a given interval is
independent of the number of events observed over the previous interval
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λk =

∫ (k+1)T

kT
λ (t) dt (2.6)

where λ (t) is the photon flux rate (in units of photons/second). Depending upon

the length of time-step k, it is frequently sufficient to make the following approximation.∫ (k+1)T

kT
λ (t) dt ≈ λ (t)T (2.7)

Based on the statistics of the Poisson process, we may mathematically begin to

understand the “rain-drop” problem. As we noted above, if we want to measure the

rate of rainfall as a function of time (with high time resolution), the error or noise in our

measurements will become very large. As we decrease the size of the time window, T ,

the noise increases. The properties of the Poisson distribution may be used to express

this problem mathematically by examining the signal-to-noise ratio (SNR).

The SNR of a Poisson process may be written as follows.

SNR
[
Λ̃k

]
=

(
E
[
Λ̃k

])2

var
(

Λ̃k

)
=
λ2
k

λk

= λk

= λ (t)T

(2.8)

We see from the last line in Equation (2.8) that as the time resolution increases

(i.e. as T gets smaller), the SNR goes to zero. It is important to note that this loss

of signal quality occurs even in what would otherwise be considered an entirely “noise-

free” environment. That is, even if there are no sources of additive noise, and even

if the detector in question is “perfect”, the SNR still tends to zero as time resolution

increases.
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Photon Arrival Times

While the number of photon arrivals over a given time period is modeled as a Poisson

process, the time, t, at which the photons arrive is modeled by an exponential process.

We show this fact first for the case of a homogeneous Poisson process.

We would like to compute the probability of a photon arriving at or before a given

time. We first note that the probability of a photon arriving at or before a given

time is equal to one minus the probability of a photon arriving after the given time.

Mathematically:

Pr [t ≤ t|λ] = 1−Pr [t > t|λ] (2.9)

We also note that stating that a photon has arrived after a given time is equiv-

alent to stating that zero photons arrived during the given time interval. Recalling

Equation (2.4), we can write this probability as:

Pr
[

Λ̃k = 0 |λk
]

= e−λk
(λk)

0

0!
= e−λk (2.10)

Consequently, we may say:

Pr [t ≤ t|λ] = 1− e−λk (2.11)

We then recall that the term λk refers to the expected number of photons in a given

time period. For the case of a constant flux rate, this term is equal to the photon flux

rate times the length of the time period, λk = λt. Therefore, the probability of the

photon’s arrival time being less than or equal to t is:

Pr [t ≤ t|λ] = 1− e−λt (2.12)

If the time of arrival, t is a random variable, then Equation (2.12) is by definition

the cumulative distribution function of the variable. Consequently, we may obtain the
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probability density function for t by taking the derivative of Equation (2.12).

ft (t|λ) =
d

dt

(
1− e−λt

)
= λe−λt (2.13)

The arrival time cannot be negative, so the full probability density function is written

as:

ft (t|λ) =

{
λe−λt t ≥ 0

0 t < 0
(2.14)

where

• t is the amount of time before the next event occurs

• λ is the photon arrival per unit time, or the arrival rate

Equation (2.14) is the PDF of the exponential distribution. We will use the short

hand t ∼ exp [λ] to indicate that t is exponentially distributed, and below are a few

relevant properties of the exponential distribution.

E [t] =
1

λ
(2.15a)

var (t) =
1

λ2
(2.15b)

As with the Poisson distribution, the exponential distribution is “memoryless.” That

is to say that the probability of an event occurring at some future time is independent

of when the last event occurred. Mathematically:

Pr [t > s+ t|t > s] = Pr [t > t] (2.16)

The preceding derivations assumed a constant photon arrival rate, i.e. λ (t) = λ = C

where C is some constant. We know, however, that the flux will be time-varying.
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Consequently, we need to derive an expression for the PDF of photon arrival times

in the time-varying case. As before, we start out by writing the probability that the

number of photons we see in a given time interval is zero. Substituting Equation (2.6)

into Equation (2.12), we may write:

Pr [t ≤ t|λ (t)] = 1− e−
∫ t
s λ(t)dt

(∫ t
s λ (t) dt

)0

0!
= 1− e−

∫ t
s λ(t)dt (2.17)

where

• s is the current “starting” time

• t is future arrival time for which the PDF is being computed

Equation (2.17) is by definition the cumulative distribution function for a non-

homogeneous exponential process (NHEP). Consequently we may take the derivative

to yield the PDF.

ft (t|λ (t)) =
d

dt

(
1− e−

∫ t
s λ(t)dt

)
(2.18a)

= λ (t) e−
∫ t
s λ(t)dt (2.18b)

We note that in the case where t = s, the PDF of the NHEP evaluates to be:

ft (t = s|λ (t)) = λ (s) (2.19a)

An alternative derivation of the PDF for the NHEP, along with a method for gen-

erating events governed by an NHEP, is presented in Appendix A

2.2.4 Methods For Estimating λ and Correlation

Given the statistics of the signal we expect to encounter, we are interested in finding a

way to estimate the TDOA of that signal. We showed that we cannot simply measure

the signal with high time resolution and compute the correlation function from that

sampling; since SNR goes to zero as our time resolution increases, the “SNR” of the

correlation function we compute would also go to zero.
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To address this problem, we turn to techniques from digital signal processing for

estimating a signal from a noisy, sampled version of that signal. We begin with the

solution to the Wiener-Hopf equations, which describe the ideal finite-impulse response

(FIR) filter for estimating the true signal from a noisy version of the signal [34]. We

start by defining the following terms:

• Λk =
[
λk λk−1 . . . λk−m+1

]T
is the vector of true photon flux at the location

of spacecraft for the previous m time-steps

• ΛO,k =
[
λO,k λO,k−1 . . . λO,k−m+1

]T
is the true photon flux at the navigation

frame origin for the previous m time-steps

• Λ̃ =
[
Λ̃k Λ̃k−1 . . . Λ̃k−m+1

]T
is the time-history of the photon arrivals, mea-

suring Λ

• cΛ̃,λO
is the correlation vector between Λ̃ and ΛO

• MΛ̃,Λ̃ is the auto-correlation matrix of the measured signal, Λ̃

• w is the ideal finite-impulse response (FIR) filter for estimating λO,k from Λ̃k

We pause to note the units of the quantities presented above. Photon flux as a

variable in continuous time (i.e. λ (t)) has dimensions of photons
second·area . Flux in discrete

time (i.e. λk) is the result of integration over the time-step, as in Equation (2.6) which

yields units of photons
area . Finally, photon counts (i.e. Λ̃k) is simply a count of photons,

and consequently has units of photons. To achieve compatibility between the units of

Λ̃k and λk, there are two equivalent options. The first is to divide Λ̃k by the area of

the detector in question, resulting in units of photons
area for both quantities. The other

option is to multiply λk by the area of the detector, resulting in units of photons for

both quantities. We choose to multiply flux by the detector area, resulting in both

variables having units of photons, but the two options are essentially equivalent and

equally acceptable.

With these terms defined, the Wiener-Hopf equations give us an expression for an

ideal FIR filter that, when applied to the measured signal will give us the desired signal.

This solution is given below:
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w = MΛ̃,Λ̃
−1 cΛ̃,λO

(2.20)

These equations give us an expression for estimating the flux at the origin, λO from

the photon arrivals measured at the spacecraft. In the context of estimating the TDOA

of a pulsar, we are not actually interested in estimating the true signal at the origin,

λO, since this is assumed known. But, we note that the Wiener-Hopf equations do

contain the correlation vector between the measured signal and the true signal, cΛ̃,λO
.

As discussed in Section 2.2, if we can compute the correlation function and find its

maximum, we can determine the TDOA between those two signals.

The Wiener-Hopf equations do not give us a direct way to estimate cΛ̃,λO
, but they

do help us. We note first of all that there are a number of adaptive filtering algorithms,

(for instance LMS, nLMS, RLS, and Kalman Filtering) that give us tools for estimating

w. So, if we estimated w using one of the many algorithms available, and if we knew

MΛ̃,Λ̃ , then we could compute cΛ̃,λO
as follows:

cΛ̃,λO
= MΛ̃,Λ̃ w (2.21)

In general, MΛ̃,Λ̃ is not known beforehand. However, in the case of photon arrival

times, we can actually do an excellent job of approximating it. To see how we can

approximate it, we examine the matrix MΛ̃,Λ̃ more closely. MΛ̃,Λ̃ is defined by

MΛ̃,Λ̃ =


cΛ̃,Λ̃ [0] cΛ̃,Λ̃ [1] . . . cΛ̃,Λ̃ [m− 1]

cΛ̃,Λ̃ [1] cΛ̃,Λ̃ [0] . . . cΛ̃,Λ̃ [m− 2]
...

...
. . .

...

cΛ̃,Λ̃ [m− 1] cΛ̃,Λ̃ [m− 2] . . . cΛ̃,Λ̃ [0]

 (2.22)

where
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cΛ̃,Λ̃ [p] = E
[
Λ̃kΛ̃k−p

]
(2.23)

Now, we recall Section 2.2, where we stated that Λ̃k ∼ Pois [λ]. The statistics

of Poisson processes are well characterized, and we can apply that knowledge to the

expectation in Equation 2.23. There are, generally speaking, two cases of interest;

when p = 0 and when p 6= 0. When p = 0, we can simply write

cΛ̃,Λ̃ [0] = E
[
Λ̃kΛ̃k

]
= var

(
Λ̃k

)
= λk

(2.24)

On the other hand, when p 6= 0, we evaluate Equation 2.23 as follows:

cΛ̃,Λ̃ [p] = E
[
Λ̃kΛ̃k−p

]
= Cov

[
Λ̃k, Λ̃k−p

]
+ E

[
Λ̃k

]
E
[
Λ̃k−p

]
= λkλk−p

(2.25)

The last line in Equation 2.25 makes use of the fact that two measurements are

independent realizations of the same Poisson process, and so the covariance between

them is zero. Substituting 2.24 and 2.25 into 2.22 yields the following result.

MΛ̃,Λ̃ =


λk λkλk+1 . . . λkλk+m−1

λkλk−1 λk . . . λkλk+m−2

...
...

. . .
...

λkλk−m+1 λkλk−m+2 . . . λk

 (2.26)

Next we note that since λk << 1, this implies λkλk−p ≈ 0. With this approximation,

MΛ̃,Λ̃ simply becomes a scaled version of the identity matrix, MΛ̃,Λ̃ = λIm×m. Under
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this assumption then, we can say that w ≈ λ cΛ̃,λO
. We note that we are only interested

in finding the peak of the correlation vector, so the fact that the correlation vector is

scaled by flux does not impact our ability to determine TDOA.

As we stated above, we have many tools at our disposal to find w, so according to

this analysis, we simply need to select an appropriate adaptive filtering algorithm, run

it on the incoming signal Λ̃, and the resultant filter should be the correlation vector

between Λ̃ and the true signal, λO. Furthermore, not only do we have tools to estimate

w, but these estimators will also estimate the covariance of w. These two points are

the key takeaways from this section: We can estimate the correlation between the true

signal and the observed signal, and its variance, simply by estimating the optimal FIR

filter for the observed signal, given that the observed signal is weak enough.

It is interesting to note that the assumption of λ << 1 is a key component of this

analysis, (as it lets us make the identity approximation), but at the same time, the

fact that λ << 1 was what made the problem challenging. We might reasonably be

skeptical of the claim that λ << 1 actually makes our estimation problem easier rather

than harder. In fact, it does some of both.

On the one hand, λ << 1 does make our analysis easier, not only because it makes

our approximation cΛ̃,λO
≈ w reasonable, but also because it makes the matrix MΛ̃,Λ̃

well-conditioned. Even though we will never actually invert MΛ̃,Λ̃ , the fact that it

is well-conditioned actually helps the algorithms that we will end up using maintain

stability.

On the other hand, as noted multiple times previously, λ << 1 is essentially the

source of the difficulty to begin with. If λ were not much less than 1, then we would

not need to estimate cΛ̃,λO
to begin with; we could just compute it directly. At some

large enough value of λ, the effect of the individual photon arrivals would be smoothed

out by the characteristics of the signal, and so the particular challenge addressed here

would disappear. So, as we would suspect intuitively, λ << 1 is less desirable than

λ >> 1. But, there is a “silver lining” in that λ << 1 allows the algorithms described

here to function.

It turns out that, in cases where the expected photon flux is large, this method can

still be used with some modification, as will be shown in Section 3.1.3. So, in the cases

where flux is large enough for the λ << 1 approximation to be incorrect, but where flux

29



is still not large enough to estimate correlation directly, this technique can still be used.

Nomenclature

Correlation Vector Estimation
cA(t),B(t) [p] The correlation between signals A(t) and B(t+ p)

n Dimension (number of taps) in the correlation vector

p Index to denote a specific correlation vector or FIR filter tap

MA(t),B(t) The correlation matrix (auto or cross) between a signal and itself

(MA(t) ), or a signal and another signal (MA(t),B(t) )

wλ Ideal FIR filter for estimating signal λ from noisy measurement of signal

Data Association

p Indices to designate signal source

Probability and Statistics

Pr [A] Probability of event A occurring

var (a) The variance of random variable a

E [a] The expected value of random variable a

exp [λ] An exponenential distribution with flux λ

fX (x) The probability density function of a random variable X evaluated at x

Signals and Measurements

Λ̃A,k The number of photons measured at location A over time-step k

(Photons)

λ
(p)
k , λ(p) (t) Expected number of photons at time index k, or expected photon flux

at time t, from signal source p (photons, photons/second)

ti Time-of-arrival measurement of photon i (seconds)

Si ith signal source
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State Estimation
O Denotes the navigation frame origin

j, k Time-step indices

t Current time (seconds)

τ
A(S)
t Time-difference of arrival of signal from signal source S measured be-

tween vehicle A and navigation frame origin (seconds)

m Dimension of state vector

x State vector

n Length of time between filter time-steps (seconds)

[·]− Indicates a priori value

[·]+ Indicates a posteriori value

·̂ Indicates estimated value

a Indicates vector quantity

a Indicates scalar quantity

Misc
In×n The nxn identity matrix

i Iterator to designate summation index

A,B Indices to designate spacecraft(s)
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Chapter 3

Recursive Range Estimation

In this chapter, an Extended Kalman formulation of the TDOA estimation problem

for pulsar signals is presented [35]. Unlike the formulations in [15, 14, 13, 17, 14], the

approach presented is recursive, in that the TDOA estimate and kinematic state of the

spacecraft may be updated after each photon arrival. The updated kinematic state may

then be used in future photon measurements to compute the optimal TDOA solution.

The recursive nature of the algorithm presented would be particularly beneficial in cases

where the original estimate of the kinematic state is of low accuracy, because it would

allow the vehicle to update its kinematic state after each photon arrival, rather than

waiting until the end of a predetermined observation period.

Another advantage of the method proposed here is that it does not rely on the

particular periodic nature of the pulsar signal, unlike the methods described in [15, 14,

13, 17, 14]. In principle, the method proposed here could be used on a signal which is

aperiodic in nature, such as signals produced by quasars or γ-ray bursts, although if this

algorithm were to be used with an aperiodic signal, the time-history of that signal at

the navigation frame origin would still be needed in order for the algorithm to function.

This general functionality of the algorithm proposed here comes at the cost of increased

complexity, which arises from the fact that this algorithm makes no assumptions about

the source signal other than that it has stationary statistics.

A high level architecture of the approach proposed is shown in Figure 3.1, and is

reminiscent of Vector Delay Lock Loops (VDLL) used to track weak GNSS signals [36].

A key feature of this algorithm is that it does not process the photons in a batch manner.
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ω̂k

r̂k

v̂k

Figure 3.1: X-ray navigation filter block diagram. The filter outputs are the complete
PNT state vector consisting of the attitude quaternion q, the angular velocity rate ω,
the position vector r, and the velocity vector v.

Rather, each photon is processed individually to update the TDOA estimate, and at

each update, an estimate of the vehicle’s current kinematic state is used to aide in

estimating the current TDOA.

As mentioned previously, the key quantity that needs to be determined in order to

effectively navigate via signals of opportunity is the arrival time, or more precisely the

time difference of arrival (TDOA) between the user and another location where the signal

is measured or known a priori. This is challenging with signals from pulsars because,

with the detector sizes available for small satellites such as CubeSats, typical photon

flux rates are less than one photon per second. Even though the problem becomes easier

with largest detectors, it is still very challenging owing to the extremely low signal-to-

noise ratios of pulsar signals. While in theory, a large enough detector could help to

address some of the problems caused by the low SNR, in practice, the cost and size

of a detector required to reduce the noise associated with the Poisson statistics of the

signal makes such a detector unfeasible for use on a spacecraft. It is not immediately

obvious that it would even be possible to determine the TDOA of such a sparse signal.

However, we can take advantage of the fact that the statistics of the underlying signal

remain unchanged throughout the duration of the observation.

The most obvious means of determining the TDOA between two signals is to com-

pute the cross-correlation vector between those signals. The discrete-time cross-correlation

function between a signal λA,k and a delayed version of that signal λO,k is given by:
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cλA,λO [p] =
∑
i

λA (t+ iT )λO (t+ (i+ p)T ) (3.1)

where

• T is the discrete time-step length

• k is the time index

• p is the cross-correlation vector index

• D = ∆T
T is the delay between the two signals, in discrete time-steps

• i is the index of summation

The cross correlation bears many similarities to the discrete convolution, without

the time-reversal. It is well-known that the cross-correlation between a signal and a

delayed version of the signal is maximized at the value of the offset between the two

signals [32, 33], i.e. p = D = ∆T
T . Note that the signal seen at the detector is a

version of the signal at the origin, delayed by ∆T
T time-steps. Referring to the NAVSOP

concept shown in Figure 1.2, this relationship between the two signals may be written

mathematically as follows:

λA (t) = λO

(
t+

rAt · `(S)

c

)
= λO

(
t+ τAO

)
(3.2)

Therefore, if we could directly compute the cross-correlation between λO and λA, we

could find the value that maximizes that cross-correlation and from there directly find

the TDOA. However, as discussed in Section 2.2, the signals received from pulsars are

usually quite weak, and therefore a direct cross-correlation is dominated by the noise of

individual photon arrivals.

We make use of the fact that for very weak signals, and in particular signals which

are a realization of a Poisson process with a very small rate parameter, the correlation
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Figure 3.2: Correlation function as state vector

vector between the measurement and the true signal is equivalent to the ideal finite-

impulse response (FIR) filter for reconstructing the measured signal, as was shown in

Section 2.2.4. Here, we make use of that fact, and formulate an Extended Kalman Filter

with a state vector that consists of the ideal FIR filter taps to estimate the correlation

vector.

3.1 Correlation Vector Kalman Filter

The first task to be addressed is the implementation of a filter which will estimate the

ideal FIR filter taps, wλO . As noted above, we achieve this by designing a Kalman

filter that has as its states values of the correlation function between the signal at the

spacecraft’s location and the signal at the origin at various delays. The state vector

x̂k ∈ Rm×1 is illustrated in Figure 3.2. The optimal estimate of the state vector is

defined as:
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E
[
x̂k,p

]
= cλ,λO [p+ d]

=
∑
i

λA,k+iλO,k+i+p+d
(3.3)

where d is an offset term which will be described below. Recall from Equation (2.6) and

Equation (2.7) that the expected number of photons at a given time (λA,k+i) may be

approximated by taking the continuous-time photon flux at that time and multiplying

it by the desired time-step.

Modern adaptive signal processing provides us with a variety of adaptive filtering

techniques for this estimation task, including LMS (Least Mean Squares), RLS (Recur-

sive Least Squares), and Kalman filtering. For this particular estimation problem, the

Kalman filter is the most well-suited. As shown in [38], the RLS filter is essentially a

Kalman filter without a time update model. Because we know with certainty that the

system is dynamic, it makes sense to employ an algorithm that allows us to account

for that dynamic change. We will follow the standard Kalman filter formulation which

uses a time update and measurement update, as described in a number of standard

textbooks [38, 39].

The dynamic nature of the problem and the formulation of a Kalman filter time-

update requires the introduction of an additional term in the time-index of the origin

signal, d. This term is introduced because the state vector indices, p only take integer

values from 0 to m, the dimension of the state vector. However, it is entirely possible

that the delay τ = ∆T
T might fall outside of this range. We are interested in computing

the correlation vector near the value of the TDOA, so we will almost certainly have to

“shift” the state vector some amount forward or backward in time to stay near the value

of the TDOA. The term d allows us to perform this shifting by adjusting the value of d

as needed. This procedure will be discussed in more detail in Section 3.1.1 below.

3.1.1 Correlation Vector Time Update

The first step we want to accomplish is to formulate a way to estimate how the state

x̂k will change from time-step j to time-step k between photon measurements. Even

though the state vector does not directly represent the spacecraft’s kinematic state (the
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Figure 3.3: Correlation peak shifted by δ

state vector is a correlation between two signals), the state vector will evolve predictably

in time such that a dynamic model may be derived.

Suppose that at time-step j, the spacecraft is moving along at a velocity vAO with

respect to the solar-system barycenter (SSB), and that there is an estimate of that

velocity, v̂AO . Suppose further that the direction to the signal source is known in the

form of the unit vector, `(S). Finally, assume that there is a prior estimate of the state

vector, x̂+
j (that is, the estimate of the state vector after the measurement update at

time j).

Since the spacecraft is moving at some velocity relative to the signal source, and since

the distance between the signal source and the spacecraft is changing, the correlation

peak ought to move some small amount between time-step j and time-step k. The

amount by which the peak is shifted may be calculated, given the estimate of velocity.

The evolution of the state vector is illustrated graphically in Figure 3.3. Mathematically,

the shift from time-index j to k, δ̂k→j may be determined by solving the following first-

order differential equation:
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d

dt
δ̂j→k =

v̂AO (t) · `(S)

cT
(3.4)

where T is the time-step of the filter. If the time-step is assumed to be small enough

such that velocity may be approximated as constant, then δ̂k→j may be estimated as

follows:

δ̂k→j =
v̂AO,k · `(S)

cT
(k − j)T =

v̂AO,k · `(S)

c
(k − j) (3.5)

where v̂AO,k is the velocity vector at time index k.

The expression for δ̂k→j may now be used to construct the state transition matrix,

Fj→k. The state transition matrix must, when multiplied by x̂+
j , shift the peaks by the

amount δ̂k→j . There are, in general, three possibilities that should be considered. The

first, and simplest situation is when δ̂k→j = 0. This would indicate that the spacecraft

has neither moved closer to nor farther from the signal source. This situation would

arise either when the spacecraft is not moving, or when the spacecraft is moving in a

direction perpendicular to the line of sight vector `(S) between the source and spacecraft,

resulting in the dot product in Equation (3.5) equaling zero. In this scenario, the state

transition matrix would simply be the identity matrix. This would give the desired

result, namely that the peaks of the state vector remain in exactly the same location.

Another scenario is when δ̂k→j = z, where z is an integer. This scenario is very

unlikely, for the obvious reason that the probability of v̂AO,k · `(S)(k− j) being an exact

multiple of c is very low. This would have the effect of moving all the features of the

state vector exactly z steps, which is the desired result if δ̂k→j is truly an integer.

The last, and by far the most probable scenario is when −1 < δ̂k→j < 1. That

is, the desired delay is some fractional value with a magnitude less than one. For this

scenario, we need a state transition which will result in a fractional delay. Put another

way, the state transition matrix Fj→k must “interpolate” between the values of x̂+
j .

The resultant state vector should consist of the values that lie “between” the current

values of x̂+
j . This effect is equivalent to the effect produced by a fractional delay filter.

Much work has been done on the subject of fractional delay FIR filters [40, 41, 42, 43].
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For the purposes of this dissertation, a simple sampled sinc
(
n+ δ̂k→j

)
function will

provide sufficiently accurate results for all three possible cases noted above, since the

sinc function is the ideal interpolator. Therefore, in general the state transition matrix

is described by

Fj→k =


sinc

(
δ̂k→j

)
sinc

(
δ̂k→j + 1

)
. . . sinc

(
δ̂k→j +m− 1

)
sinc

(
δ̂k→j − 1

)
sinc

(
δ̂k→j

)
. . . sinc

(
δ̂k→j +m− 2

)
...

...
. . .

...

sinc
(
δ̂k→j −m+ 1

)
sinc

(
δ̂k→j −m+ 2

)
. . . sinc

(
δ̂k→j

)


(3.6)

This matrix may be used to write the time update of covariance from time-step to

time-step, via the discrete Lyapunov equation as follows:

P−k = Fj→k P
+
j F Tj→k + Lj Qj→k,δ L

T
j (3.7)

The process noise covariance matrix Qj→k,δ and the process noise mapping matrix

Lj need to be determined. To do this, note that the main uncertainty in propagation

comes from the uncertainty in the velocity of the space vehicle, which in turn makes the

quantity δ̂k→j uncertain. Consider the following model for the estimate of velocity:

v̂j = vj + wj,v (3.8a)

wj,v ∼N
(
0, Qj,v

)
(3.8b)

Then, from Equation (3.5), the estimate of shift will be given by
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δ̂j→k =
v̂j · `(S)(k − j)

c

=
(vj + wj,v )T · `(S)(k − j)

c

=
vj

T · `(S)(k − j)
c

+
wj,v

T · `(S)(k − j)
c

= δ̂k→j +
wj,v

T · `(S)(k − j)
c

= δ̂k→j + wj,δ

(3.9)

The variance of the error in the estimate of δ̂j→k may then be written as:

wj,δ ∼N
[
0, Qj,δ

]
(3.10a)

Qj,δ =

(
(k − j)

c

)2

`(S) wj,v `
(S)T (3.10b)

Although the error in δ̂j→k is additive, it is clear upon examination of Equation 3.6

that the final effect on the uncertainty of the state estimate is not linear. In EKFs, this

type of non-linearity is handled by linearization. In order to linearize, we first rewrite

the time-update as the following non-linear function of the state, the estimated change

in peak location, and noise.

x̂−k = f( x̂+
j , δ̂j→k , wj,δ ) = Fj→k( δ̂j→k , wj,δ ) x̂−j

=


sinc (δ + wδ ) sinc (δ + wδ + 1) . . . sinc (δ + wδ +m− 1)

sinc (δ + wδ − 1) sinc (δ + wδ ) . . . sinc (δ + wδ +m− 2)
...

...
. . .

...

sinc (δ + wδ −m+ 1) sinc (δ + wδ −m+ 2) . . . sinc (δ + wδ )

 x̂+
j

(3.11)

The process noise mapping matrix may then be derived by linearizing the time

update equation, f( x̂+
j , δ̂j→k , wj,δ ) with respect to the process noise.
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Lj =
∂

∂ wδ
f( x̂+

j , δ , wδ )

∣∣∣∣
wδ =0

=
∂

∂ wδ


sinc (δ + wδ ) sinc (δ + wδ + 1) . . . sinc (δ + wδ +m− 1)

sinc (δ + wδ − 1) sinc (δ + wδ ) . . . sinc (δ + wδ +m− 2)
...

...
. . .

...

sinc (δ + wδ −m+ 1) sinc (δ + wδ −m+ 2) . . . sinc (δ + wδ )

 x̂j
∣∣∣∣∣∣∣∣∣∣∣
wδ =0

= lim
δ→ δ̂


(

cos( δ )
δ − sin( δ )

( δ )2

) (
cos( δ +1)
δ +1 − sin( δ +1)

( δ +1)2

)
. . .(

cos( δ −1)
δ −1 − sin( δ −1)

( δ −1)2

) (
cos( δ )
δ − sin( δ )

( δ )2

)
. . .

...
...

. . .

 x̂j
(3.12)

Note that the final expression contains a singularity at δ̂ = 0. However, a simple

application of L’Hopital’s rule reveals the limit to be zero.

At this point, the main source of error in the time-update has been accounted for.

However, we also include an additive noise term, Qlin , to account for errors introduced

by linearization, and sampling of the sinc (·) function. The magnitude of the uncertainty

introduced by the sinc (·) function and the linearization could be quantified analytically,

which would inform the value used for Qlin . However, in this work, the parameter was

experimentally tuned using real data and simulation data.

In summary, the EKF time update equations for propagating the state from one

time-step to the next are given below.
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x̂−k = Fj→k x̂
+
j (3.13a)

P−k = Fj→k P
+
j FT

j→k + Lj Qj,δ LTj + Qlin (3.13b)

Fj→k =


sinc

(
δ̂
)

. . . sinc
(
δ̂ +m− 1

)
...

. . .
...

sinc
(
δ̂ −m+ 1

)
. . . sinc

(
δ̂
)

 (3.13c)

Lj = lim
δ→ δ̂

 cos( δ )
δ − sin( δ )

( δ )2 . . .
...

. . .

 x̂j (3.13d)

δ̂j→k =
vAO,k · `(S)(k − j)

c
(3.13e)

3.1.2 Alternative implementation of time update

In Section 3.1.1, the time update equations for the correlation vector were derived. In

this section, an alternative means of performing the time update is presented. This

alternative method leverages the derivations presented in Section 3.1.1, but reduces

computational complexity and reduces some of the error associated with the use of the

sinc (·) function for performing the time update.

We begin by noting that the end-goal is to estimate TDOA by estimating the cor-

relation vector. We also note that the correlation vector consists of values which are

inherently linked to a given TDOA. Recall from Equation (3.3) that the expected value

of a single component of the state vector is an estimate of the correlation vector between

the signal at the spacecraft and the signal at the origin shifted by some amount p+ d.

In Section 3.1.1, we derived time-update equations which would have the effect of

shifting the state vector forward or backward in time by some amount δ. However, we

could achieve the same effect by keeping the state vector values the same, and instead

shifting the value of the delays to which each state vector component corresponds; essen-

tially shifting the “x-axis” of the correlation function rather than shifting the correlation
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Figure 3.4: TDOA axis shifted by δ

vector itself. Mathematically we may express this as follows:

E
[
x̂+
j,p

]
= cλ,λO [p+ d] (3.14a)

E
[
x̂−k,p

]
= E

[
x̂+
j,p

]
= cλ,λO

[
p+ d+ δ̂

]
(3.14b)

Equation (3.14) highlights the fact that in this alternative time update, the value of

the state vector remains unchanged; instead the meaning of that value changes. This

alternative update to the state vector is illustrated in Figure 3.4.

While the values of the state vector remain unchanged, the covariance is expected

to increase with the time update, due to uncertainty in the velocity. We recall the

derivation for the updated covariance from Section 3.1.1.

P−k = Fj→k P
+
j FT

j→k + Lj Qj,δ LTj + Qlin (3.15)

We note that there are three terms for the time-updated covariance. The term

Fj→k P
+
j FT

j→k has the effect of interpolating the covariance, just as the term Fj→k x̂
+
j
T

interpolates the state vector. Since in this time-update formulation, we do not shift the
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state vector, the covariance matrix does not need to be shifted either.

The second term in the time-update covariance, Lj Qj,δ LTj models the uncertainty

that is introduced due to the uncertainty in the velocity. This uncertainty is still present

regardless of the formulation used, as long as there is uncertainty in the velocity, so this

term remains in the time-updated covariance.

Finally, the term Qlin is representative of additional, unmodeled noise sources, in-

cluding noise introduced by linearization. Since the same linearization is still used in

this alternative formulation, we also still add this final additive noise source. However

we note that the magnitude of the additive noise source needed to achieve good results

is typically lower than what is needed using the time-update formulations derived in

the previous section.

In summary, the alternative time-update equations are given as follows.

x̂−k = x̂+
k (3.16a)

P−k = Lj Qj,δ LTj + Qlin (3.16b)

Lj = lim
δ→ δ̂

 cos( δ )
δ − sin( δ )

( δ )2 . . .
...

. . .

 x̂j (3.16c)

δ̂j→k =
vAO,k · `(S)(k − j)

c
(3.16d)

It should be noted that while in this formulation of the time update, the value of

the state vector remains constant, the value of the state vector will change during the

measurement update. The equations which update the value of the state vector based

on measured values will be derived below in Section 3.1.3 and Section 3.1.4.

3.1.3 Correlation Vector Measurement Update

We now turn our attention to the measurement update equations. Recall that our

measurement consists of a series of photon arrival times. The measurement vector, Λ̃k

is formulated as the vector consisting of the number of photons that arrived in each of

the last m time indices. We seek a measurement model that will relate this measurement

vector to the state vector we are trying to estimate. To do this, we make use of the
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fact that the correlation vector is equivalent to a scaled version of the ideal FIR filter,

as shown in Section 2.2.4. We note the result from signal processing theory [38], that

the ideal FIR filter w of length m which enables the reconstruction of λO,k from noise

corrupted measurement Λ̃k is given by:

λO,k = Λ̃kw
T + v (3.17)

where the error, v , is minimized in the least-squared sense by the ideal FIR filter.

To cast Equation 3.17 into a form useful for estimation, we use yk to denote our

measurement and recall that ideally our state estimate x would be equal to w. Thus,

the measurement update may be written as follows.

yk = λO,k = h( x̂−k ,Λk, vpois ) (3.18a)

ŷk = Λ̃k x̂k
T = (Λk + vpois )T x̂k (3.18b)

This measurement update equation does not follow the “signal + noise” model of

a linear problem. Rather, the noise is introduced through Λ̃(k) and multiplied by the

state vector. We recall that the state vector is defined as the optimal FIR filter, which

is defined such that the expected value of the dot product of the state vector and the

signal vector is equal to the signal at the origin (as shown in Equation 3.17). Therefore

the expected value of the measurement residual may be written as follows:

δy = yk − ŷk

= λO,k − Λ̃k x̂
−
k
T

= λO,k − (ΛA,k + vpois ) x̂−k
T

(3.19)

The variance of this measurement residual may be analyzed as follows. Note that

the following analysis makes use of the following properties:

• var (λO) = 0

• var (λA) = 0
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• E
[
vpois

]
= 0

• var
(
vpois

)
= λA

The analysis also assumes that the individual terms in the summation resulting from

the vector dot-product are uncorrelated. Finally, second order terms are neglected.

S = var (δy )

= var
(
λO,k − Λ̃(k) x̂−k

T
)

= var
(
Λ̃(k) x̂−k

T
)

= Λ̃(k)var
(
x̂−k
)
Λ̃(k)T + x̂−k var

(
Λ̃(k)T

)
x̂−k

T
+ var

(
x̂−k
)

var
(
Λ̃(k)T

)
= Λ̃(k) P−k Λ̃(k)T + x̂−k Rk,Λ̃

x̂−k
T

(3.20)

where the matrix R
k,Λ̃

is defined below. Note that this same result could be obtained

by linearizing the measurement equation yk = h( x̂−k ,Λk, vpois ) with respect to the

state vector and measurement noise.

The remaining task is to estimate the covariance of the noise associated with the

photon arrival vector, R
k,Λ̃

. We first recall the statistics of a Poisson process and note

that the variance of such a process is equal to the flux of that process at a given time step.

We next note that the number of photons which arrive over each time step is statistically

independent of the photons which arrived at any other time step. Consequently, the

measurement noise may be written as:

R
k,Λ̃

=


λA,k 0 . . . 0

0 λA,k+1 . . . 0
...

...
. . .

...

0 0 . . . λA,k+m−1

 = Im×mΛA,k (3.21)

Because the exact values of ΛA,k are a function of the spacecraft’s position, they are

not known precisely. However, the time-averaged flux, λ̄k is known precisely from the

signal statistics, or can be approximated by taking the average photon arrival rate over
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a long period of time. Using this average, we make the following approximation.

R
k,Λ̃

= Im×mΛA,k ≈ Im×mλ̄k (3.22)

Consequently, the final measurement residual variance may be written as follows.

S = Λ̃T
k P

−
k Λ̃k + λ̄k x̂

−
k x̂

−
k
T

(3.23)

3.1.4 Alternate Formulation of Measurement Update Equations

The measurement update outlined in Section 3.1.3 will, in general, only update one state

within the state vector at a time. This may be seen by examining the measurement

update matrix Λk and noting that, in general, the photon arrival rate is much less than

one photon per period. When the photon arrives, the first measurement matrix will be

zeros except for the first quantity, which will be one. At the next time step, the first

value in the matrix will be zero and the second will be one. The one, representative of

the single photon arrival, will progress to the end of the measurement matrix, at which

point the state update will be complete.

Λ̃k =
[
1 0 . . . 0

]
(3.24a)

Λ̃k+1 =
[
0 1 . . . 0

]
(3.24b)

Λ̃k+m−1 =
[
0 0 . . . 1

]
(3.24c)

We further note that the “measured” quantity is actually not measured by the

spacecraft, but is the photon flux at the origin, λO,k. Consequently, it is possible to know

the measurement values for all the measurement updates as soon as a photon has arrived.

Consequently, when a photon arrives, all the states may be updated simultaneously
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rather than sequentially, as follows.

y =


λO,k

λO,k+1

...

λO,k+m−1

 = ΛT
O,k (3.25a)

ŷ =


Λ̃k

Λ̃k+1

. . .

Λ̃k+m−1

 x̂−k T =



[
1 0 . . . 0

][
0 1 . . . 0

]
...[

0 0 . . . 1
]

 x̂
−
k
T

= Im×m x̂
−
k
T

(3.25b)

Consequently, the measurement residual and residual variance are given by:

δy = ΛT
O,k − x̂−k

T
(3.26a)

S = λ̄kIm×m + P−k (3.26b)

This vectorized form of the measurement update offers two advantage of the se-

quential update derived above. First, it saves the computation time associated with

performing m state updates. It will be noted that the vectorized formulation requires

the inversion of an m×m residual variance matrix, while in the sequential update the

residual variance is a scalar so no matrix inversion is performed. In terms of compu-

tation time, performing the matrix inversion is more computationally expensive than

performing m divisions. However, as will be discussed in the next section, there are

additional steps which must be performed after each measurement update. The added

computational time of these additional steps outweighs the computational cost of per-

forming the matrix inversion.

Second, and more fundamentally, the vectorized measurement update offers the

advantage of updating all of the states simultaneously. This is advantageous because of

the linearization which is used in the measurement update. In the sequential update, the

first state in the state vector and its associated covariance, x̂1 and P(1,1) are updated

first, before any of the other states. If the state estimate variance is large, particularly

during initialization, the a posteriori value of x̂1 can be significantly off before the filter
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converges. When the next state is updated, the erroneous value of x̂1 is used to compute

the new Kalman gain, as seen in Equation (3.23). If the value is off by a significant

amount, this can result in the measurement residual being far larger than it should be,

resulting in an incorrectly small value for the next state’s Kalman gain matrix. This

can lead to very inaccurate estimates of all the states. By updating all the states in the

state vector at once, rather than sequentially, this problem may be avoided.

It will also be noted that the use of the vectorized measurement update makes an

assumption about the weakness of the signal which may be violated in the case of very

strong signals (i.e. the low flux assumption). However, it turns out that even in the

case of very strong signals where this assumption does not hold, making the assumption

is not problematic. This is because we assumed in the derivation of the filter that the

signals are very weak, which leads to the equivalency of the ideal FIR filter and the

correlation vector. Enforcing the weak signal assumption here actually leads to the FIR

filter/correlation vector equivalency holding true, even for very strong signals. This is

because when using the vectorized measurement update, each time the filter taps are

updated, the signal they “see” is a very weak signal, even though the signal itself is

strong. Consequently the filter taps end up estimating the correlation vector because

they are estimating the filter that would be needed to estimate λorigin from a very weak

signal, even if the signal is in fact not weak.

3.2 Estimation of TDOA from Correlation Vector

Once we have an accurate estimate of the correlation vector, the next task is to identify

the peak τAO,k offset of that vector. In this work, the peak is estimated by fitting a

quadratic function to a subset of x̂+
k surrounding the maximum value of x̂+

k . This

quadratic function is maximized, and the argument of the maximum of the function is

taken as τ̂AO,k . This method has the advantage of allowing τ̂AO,k to take values that are

not integer multiples of T . It has the additional advantage of providing a convenient way

to estimate the variance of τ̂AO,k . There are two ways which the quadratic fit method

may be used to derive the variance of the TDOA estimate error, both of which are

outlined below.
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3.2.1 Linearized Transform

The most straight-forward way to determine the variance of the TDOA estimate error is

to linearize the expression for determining the TDOA. We note first that the quadratic

fitted to the peak and surrounding state vector may be described as:

f(τ ) = a τ 2 + b τ + c (3.27)

Given these parameters, the function is maximized at:

τ̂ =
−b
2a

(3.28)

The task then is to estimate the parameters a and b from the state vector. This

problem may be formulated as a system of equations:


x̂k1

x̂k2

...

x̂kn

 =


k1 k1 1

k2
2 k2 1
...

...
...

k2
n kn 1



a

b

c

 (3.29)

where x̂ki is the estimated value of the correlation for delay ki.

In the case of only three points (the maximum and one point on either side), the

solution is unique. In this case, we can even derive a direct expression for the location

of the peak by using the analytical expression for the inverse of a 3× 3 matrix.

We first denote the delay associated with the maximum estimated correlation value

as k0, and the delay values on either side as k−1 and k+1, respectively. Then the

expression for the location of the value that maximizes the fitted quadratic is

τ̂ =
x̂k−1

A+ x̂k0
B + x̂k+1

C

2( x̂k−1
D + x̂k0

E + x̂k+1
F )

(3.30)
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where

A = (k2
0 − k2

+1) (3.31a)

B = (k2
+1 − k2

−1) (3.31b)

C = (k2
−1 − k2

0) (3.31c)

D = (k0 − k+1) (3.31d)

E = (k+1 − k−1) (3.31e)

F = (k−1 − k0) (3.31f)

This is a non-linear expression, and so to determine the variance of τ̂ we must linearize

this function by differentiating with respect to the state vector.

T =


∂τ
x̂k−1

∂τ
x̂k0

∂τ
x̂k+1


T

=



(AE−BD) x̂k0
+(AF−CD) x̂k+1

2(D x̂k−1
+E x̂k0

+F x̂k+1
)2

(BD−AE) x̂k0
+(BF−CE) x̂k+1

2(D x̂k−1
+E x̂k0

+F x̂k+1
)2

(CD−AF ) x̂k0
+(CD−BF ) x̂k+1

2(D x̂k−1
+E x̂k0

+F x̂k+1
)2



T

(3.32)

where A,B,C,D,E, and F are defined as in Equation (3.31).

With this matrix, the variance of τ̂ may be computed as follows:

var ( τ̂ ) = T P−1,0,1 T
T (3.33)

where P−1,0,1 is the 3 × 3 sub-component of the state vector covariance matrix corre-

sponding to the three points used for estimating the peak.

This formulation offers a few advantages. The primary advantage is its computa-

tional simplicity. No matrix inversion is required to estimate the location of the peak,

and the variance may be directly estimated from the state vector covariance matrix.

However, this simplicity comes at the cost of a limited capability of capturing the ef-

fects of non-linearity. Also, as formulated, this method allows only three points to be
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used for fitting the peak. In many cases this is not an issue, however if the correlation

vector to be estimated is very “flat”, (i.e. it does not have a very sharp peak) it may

be advantageous to use more than three points to fit the quadratic to better estimate

the true location of the peak, which is not achievable with this method as presented. 1

3.2.2 Unscented Transform

The other method of estimating the variance of the estimate τ̂AO,k error from x̂+
k is to

use the unscented transform. A brief overview of the unscented transform is presented

below, as described in a number of standard textbooks [44, 39]. The unscented trans-

form is applied as follows. First, a set of 2m sigma points are computed based on the

covariance matrix, P+
k . The sigma points are defined as follows:

σ
(i)
k =

{
x̂k +

(√
m x̂k

)
) i = 1, . . . ,m

x̂k −
(√

m x̂k
)
) i = m+ 1, . . . , 2m

(3.34)

The quadratic fit process described above is applied to each of these sigma points,

and from each of these sigma points, an estimate of the peak location is produced.

The average of these estimated peak locations is taken to be the final estimate of τ̂AO,k ,

while the variance of the estimated peak location is taken to be the variance of the final

estimate.

The unscented approach has the advantage that it is capable of capturing the non-

linear effects of the quadratic fit. There are a few places where non-linearities may be

introduced. One is inherent in the fact that the fitting of a quadratic to a set of points

is a non-linear operation. Even in the case of only three points to be fitted (in which

case a unique solution exists), the expression for the location of the peak is non-linear

in x̂+
k .

Another source of non-linearities is the fact that the peak is fitted around the max-

imum correlation value. However, if the variance of the state vector is very large, then

the location of the tap with the maximum value may be uncertain. If the variance of

1It may be possible to overcome this limitation by fitting a quadratic function to more than three
points using a standard least squares approach, and using the estimated variations of the quadratic
parameters to then estimate the variance of the TDOA solution.
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the state vector is large enough, it is possible for the difference in values of the cor-

relation taps to be less than the standard deviation of the error of those estimates.

In this case, even the point about which the quadratic is to be fitted is a variable to

be estimated. The unscented transform captures these non-linearities, and is therefore

particularly useful in cases when the state vector uncertainty is large. On the other

hand, the unscented transform is computationally expensive.

3.3 Monte Carlo Simulations

In order to assess the performance of this algorithm when using a variety of pulsars

commonly proposed as candidate signal sources for x-ray navigation, a series of Monte

Carlo simulations was performed. The purpose of these simulations was to compare the

performance of the algorithms proposed here with a theoretically derived performance

bound, as well as with the performance of a maximum-likelihood TDOA estimator,

discussed in [17].

The simulations were run as follows. In each simulation, a single TDOA was ran-

domly selected. The TDOAs were drawn from a uniform distribution with a minimum

value of 0 and a maximum value equal to the pulsar period. Photon arrival data was

then generated using a pulse profile for the pulsar, delayed by the TDOA. These photon

arrival times were then processed by the EKF algorithm proposed here, as well as a

maximum likelihood estimator. Since the TDOA was not changing during the obser-

vation time, only the TDOA and not the frequency shift was estimated. This scenario

is analogous to a spacecraft which is not moving and is simply estimating its position,

rather than attempting to estimate position and velocity. Equivalently, this scenario

is also analogous to an observer with perfect knowledge of their velocity. The goal of

using this simplified scenario was to illustrate the performance of both algorithms under

the same “ideal” conditions, and to compare their accuracies to a theoretically derived

lower bound.

tobs (s) Background Flux
(
erg
cm2s

)
Detector FOV (◦) Energy range (keV ) Simulations

1000 1.3E-13 0.1 2 - 10 100
1000 3.2E-12 0.5 2 - 10 100

Table 3.1: Monte Carlo Simulation Parameters
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Name Period (s) Flux(
erg
cm2s

) Pulsed Fraction
(%)

Pulse Width
(s)

Duty Cycle(
Pulse Width

Period

)
J0437-4715 0.00575 1.71E-12 27 8.79E-05 0.015279
B1937+21 0.00156 4.10E-13 86 3.90E-05 0.025022
B1957+20 0.00160 5.38E-13 60 4.65E-05 0.029057
B1821-24 0.00305 1.25E-12 98 5.18E-05 0.016978

Table 3.2: Pulsar Parameters [9, 45]

This process was repeated for a range of potential detector areas, detector field-of-

views (FOVs), and flux densities (or pulsars), given in Table 3.1 and Table 3.2. Obser-

vation time was not varied, since for the case where the spacecraft remains motionless,

increased observation time is theoretically equivalent to increased detector area. This

implies that having a very large detector and a very short observation time is theoret-

ically equivalent to a very small detector and a very long observation time. For each

detector area/FOV scenario, four different pulsars, the parameters of which are given

in Table 3.1 were evaluated. Each detector area/pulsar combination was run multiple

times, and the error between the estimated TDOA and true TDOA was computed for

each run. From these errors, a single standard deviation for each detector area/pulsar

combination was computed. Details of the computations performed in these simulations

are discussed below.

The detector areas in this simulation were chosen to represent a range of likely

detector areas that could be flown onboard a spacecraft, ranging from 100cm2 (the area

of one side of a 1U CubeSat) to 1m2. The two detector FOVs were chose to represent

two alternative cases. The wide FOV was chosen to represent an instrument with no

spatial resolution, such as what might be achieved with a simple x-ray detector and

collimator. This FOV is similar to the FOV on Suzaku’s Hard X-ray Detector (HXD)

instrument, which is a non-imaging x-ray detector [46]. The narrow FOV case was

chosen to represent a detector with spatial resolution, capable of determining the angle-

of-arrival of the photons in question. Several modern x-ray telescopes have an angular

resolution of much less than 0.1◦. For instance, SWIFT ’s x-ray telescope (XRT) has

an angular resolution of 18 arcseconds, or 0.005◦ [47], so in theory such an instrument

could achieve a much lower FOV and background noise. This is because, even though

the FOV of the instrument is large, the angular resolution of the detector could be
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used to reject all the photons except those that arrive from the area in the sky in the

immediate vicinity of the pulsar, resulting in a lower effective FOV, assuming that the

spacecraft has acceptably accurate knowledge of its orientation.

3.3.1 Theoretical Accuracy

The theoretical TDOA accuracy is expressed as follows [9]:

σTOA =
W

2SNR
(3.35a)

SNR =
λ(S)ADpf tobs√[

λ(bkg) + λ(S)(1− pf )
] (
ADtobs

W
T

)
+ λ(S)ADpf tobs

(3.35b)

where

• tobs is the observation time

• pf is the fraction of the photons that are part of the “pulsed” signal component

• W is the pulse width (full width at half maximum) in seconds

• T is the period of the pulsar

• AD is the area of the detector

• λ(S) is the average photon flux from the pulsar

• λ(bkg) is the average photon flux from background noise

The expression above gives the expected accuracy to which a single TDOA could be

computed, given an observation interval tobs. The expression does not take into account

the changing position of the observer during the observation, or that the velocity of the

observer may not be perfectly known. Therefore, in order to perform a meaningful com-

parison between the estimation techniques discussed here and the theoretical accuracy,

the zero-velocity case was chosen.

Equation 3.35 contains two terms for background photon flux. The first term is the

product of the photon flux from the pulsar with the “unpulsed fraction,” or λ(S)(1−pf ).

The pulsed fraction for the pulsars used in these simulations were taken from [9, 45].
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The second background term is λ(bkg) which refers to photons coming from sources other

than the pulsar, particularly the cosmic x-ray background.

X-ray background flux is a function of energy of the incoming photons. The intensity

of this flux is approximated by the following equation [48]:

λ(bkg)(E) =



7.877E−0.29e−E/41.13 3 < E ≤ 60keV

0.0259

(
E

60

)−5.5

+

0.504

(
E

60

)−1/58

+

0.0288

(
E

60

)−1.05

E > 60keV

keV

(keV)(cm2)(s)(sr)

(3.36)

where E is the energy of the background x-ray photons.

In order to determine the background flux for a given detector, Equation (3.36) was

numerically integrated over the expected energy range and solid angle of the detector

to give the energy of the incoming flux per unit area over the detector’s energy range.

3.3.2 ML Estimator

The MLE used in these simulations was a variation of the estimator presented in [17]

and referred to in that work as an “approximate MLE.” The estimator computes the

maximum likelihood estimate of phase offset and frequency shift given an observation

of N photons. The estimator is expressed in its full form as follows:

( τ̂ml , f̂) = argmax τ ,f

N∑
k=1

logλO

(
φ̃(Tk) + τ + f(Tk − ta)

)
(3.37)

where

• Tk is the arrival time of the kth photon

• τ̂ml is the resulting ML estimate of time offset
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• f̂ is the resulting ML estimate of frequency shift

• φ̃(Tk) is the predicted phase, based on an initial estimate of the kinematic state

of the vehicle from the navigation filter

The estimator is called an approximate MLE because it approximates the true like-

lihood function based on the assumption of many periods of the signal being observed.

The approximated likelihood function results in a function which is more convenient

for computational purposes. Since the case treated here is a simplified one, in which

the observer’s position does not change during the observation time, the estimator may

be simplified even further, since there is no need to estimate the frequency shift of the

signal. Under these conditions, the estimator simply becomes:

τ̂ml = argmax τ

N∑
k=1

logλO (Tk + τ ) (3.38)

In these simulations, the ML estimate of TDOA was found using a simple grided

search algorithm over possible TDOAs from zero to the pulsar period.

3.3.3 TDOA Kalman Filter

For the EKF developed in Section 3.1, the dimension of the state vector was chosen

adaptively for each pulsar/detector area combination. Recalling that the state vector

is a sampled version of the correlation vector, and assuming that the samples span one

period of the correlation function, then the time resolution of the sampled state vector

is directly dependent on the number of states in the state vector. Specifically, the time

resolution of the state vector will be the period of the pulsar divided by the number of

states in the state vector.

T =
T

m
(3.39)

Theoretically, the EKF presented here is capable of achieving TDOA estimates of a

higher accuracy than the time-step of the filter, since it uses a quadratic best fit approach
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to find the location of the maximum value. However, in practice the quadratic fit is

only an approximation of the true peak of the correlation function. As the region over

which the quadratic approximation is being applied grows, the approximation becomes

less accurate. Since a minimum of three taps are required to formulate the quadratic

best-fit, the minimum length over which the approximation is applied is 2T . Therefore,

if the time-step is very large, the quadratic approximation must also be applied to a

large region, which results in errors in the estimation of TDOA.

The exact magnitude of the error associated with this approximation has not been

analyzed in this dissertation. Furthermore, the error associated with this approximation

would be specific to each pulsar, since some correlation functions might resemble the ap-

proximating quadratic function more closely than others. However, as will be discussed

in Section 3.5.1, the effects of the error associated with the quadratic approximation

may be dramatically reduced by centering the correlation vector estimate around the

peak of the correlation vector.

It is notable that while in these simulations a fixed time-step between taps in the

state vector was used, it need not be so. In future work, a coarse-resolution state vector

could be used initially to estimate the approximate location of the peak. After the

coarse peak location was estimated, the region near the peak could be estimated using

a filter with a smaller time-step. This process could result in significant reductions

in the number of states in the state vector and thus the number of computations per

time-step.

3.3.4 Monte Carlo Results

The results of the Monte Carlo analysis are shown in Figure 3.5 and Figure 3.6. Fig-

ure 3.5 shows the results of the MC analysis performed using a narrow FOV detector

(resulting in decreased background flux), while Figure 3.6 shows the results using a

wide FOV detector. Each sub-plot displays the achieved and theoretical standard de-

viations as a function of detector area for a given pulsar. The solid lines with circular

markers indicate the TDOA error standard deviation achieved by the EKF described in

this dissertation, while the square markers indicate the TDOA error standard deviation

achieved by the MLE. The theoretical accuracy predicted by Equation (3.35) is shown

with dotted lines. Finally, the standard deviation of a uniform distribution, U [0, T ] is
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Figure 3.5: Monte Carlo Error Analysis, FOV=0.1◦
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Figure 3.6: Monte Carlo Error Analysis, FOV=0.5◦

60



shown in the dashed line. This is the distribution from which the TDOAs were originally

drawn. This line is shown to indicate the accuracy that could be achieved by guessing

“at random.”

A summary of the Monte Carlo simulation parameters, and properties of the pulsars

used in this study are shown in Tables 3.1 and 3.2. The pulse profiles for the pulsars

used in this simulation are shown in Figure 2.1.

There are a few points worth noting from these results. The first is that both the

MLE estimator and the EKF estimator fail to achieve the level of accuracy predicted

by Equation 3.35 at low detector areas, particularly in the large FOV case. In fact, for

some detector area/FOV/pulsar combinations, the accuracy achieved both by the EKF

and the MLE is no better than the standard deviation of a uniform distribution, indi-

cating that for these combinations, the estimation methods shown here do not produce

a meaningful estimate of TDOA. The discrepancy between the theoretical error and

actual error may indicate that this theoretical accuracy is not a good lower bound in

scenarios where the expected number of photons measured by the detector is very small.

However, at larger detector areas, both the MLE and EKF estimators tend towards the

theoretically achievable accuracies.

Secondly, while there is some difference in performance between the EKF estimator

and the MLE estimator, in general both methods achieve similar performance in most

detector area/pulsar combinations. Since this study was performed assuming highly

idealized conditions, it does not necessarily indicate that the performance of the two

methods would be similarly matched in real conditions, for instance when the spacecraft

is moving at some unknown velocity. Further Monte Carlo analysis and analysis of

real data to compare the two methods under a variety of operating conditions would

serve to reveal the performance differences between the two algorithms under more

realistic conditions. However, these results indicate that the algorithm described in

this dissertation could provide the same level of accuracy as the MLE method, while

offering the benefit of incorporating new information from each photon arrival into the

navigation solution recursively.
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Figure 3.7: Suzaku’s position relative to the origin

3.4 Validation Experiment

In order to demonstrate that these algorithms function with more realistic real data,

the algorithm was exercised in post-process using photon arrival data from the Japanese

Space Agency (JAXA) Suzaku probe’s observations of the Crab Nebula Pulsar (PSR

B0531+21). The photon arrival data was used along with the known characteristics of

the pulsar to estimate the TDOA of the signal, and from there the spacecraft’s range

from the pulsar along the line-of-sight vector was computed. In order to assess the

accuracy of the computed range, the actual position of the spacecraft was also computed

based on the reported position of the spacecraft relative to Earth, and the position of

Earth relative to the SSB. This reported position was also projected onto the line of

sight vector to the pulsar, to give the true range. The path of the spacecraft and the

range being estimated are illustrated in Figure 3.7.
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The photon arrival data was obtained using the Hard X-Ray Detector (HXD) in-

strument aboard Suzaku. This detector provides an interesting validation case because

it was similar in area, timing resolution, and energy range to detectors being developed

as navigational sensors for CubeSat applications at the University of Minnesota, Twin

Cities campus [49, 50]. The specifications of the HXD instrument are available in [51].

The photon arrivals were screened using basic criteria described in [52]. These criteria

were used to screen out photons based on event grade and time interval of arrival (e.g.

photons that arrived during maneuvers, or while the Earth was blocking the field of

view were screened), but did not filter out background photon arrivals.

An estimate of the spacecraft’s velocity is required for the time-update of the state

vector. In practice, a high-fidelity orbit model would be used to estimate the vehicle’s

velocity. However, for this work, a simple one-dimensional navigation filter was used,

in which no prior knowledge of the spacecraft’s trajectory was used. Based on the

initial estimates of TDOA, an initial velocity was estimated, and then this velocity was

used to provide the velocity feedback in the time-update of the correlation vector. This

is somewhat similar to potential “cold-start” operating scenarios, in which the initial

position and velocity of the spacecraft are unknown.

The results of several different orbits are shown in Figure 3.8. Each panel in the plot

shows the error between the estimated change in range and the true change in range.

Additionally, the ±σ estimated standard deviations are plotted, which show the errors

to be reasonably well-bounded by the estimated standard deviations.

It is important to note that the results shown here may not be typical, or even achiev-

able for some pulsars at some detector sizes. The Crab Nebula pulsar has significantly

higher x-ray photon flux than other pulsars considered for x-ray pulsar navigation, and

so the results achieved here are of higher accuracy than what could be expected using

other signal sources. Nevertheless, the results shown here illustrate the ability of the

algorithm proposed here to estimate velocity in real time without any prior orbit or

trajectory knowledge, and to use that estimate of velocity to improve the final position

estimate.
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Figure 3.9: Good and bad quadratic fits

3.5 Implementation Details

In the previous sections, the theoretical framework of this estimator was derived. While

these equations are sufficient for reproducing the results shown in Section 3.3 and Sec-

tion 3.4, there are specific details of implementation and “lessons learned” which may

aide future research efforts intending to make use of these results. These findings are

summarized here.

3.5.1 Peak Centering

The algorithms presented here rely on the use of a quadratic fit the the maximum

correlation value and a few surrounding points to determine the true location of the

maximum correlation value. The quadratic fit is only an approximation to the true shape

of the peak of the correlation function. As such, the accuracy of this approximation

may vary based on a number of factors. One factor which has been determined to have

a large impact on the accuracy of the approximation is how asymmetric the quadratic

fit is about the max point (Figure 3.9).

It may be seen by inspection that the quality of the fit depends on how close the

location of the peak correlation value is to the location of the true correlation function
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peak. If the peak correlation value lies exactly on the peak, then the maximum of the

quadratic will be exactly equal to the true maximum of the correlation vector. If on the

other hand the peak of the correlation function is far from the peak correlation value,

the quadratic may do a poor job estimating the peak. Consequently, it is desirable to

keep the peak “centered” about a correlation tap.

Of course, it is not possible to know the exact location of the true peak. However,

it is possible to center the peak based upon the current estimate of TDOA. In fact,

the time-update matrix is designed exactly to shift the correlation vector a specified

amount. In Section 3.1.1, the time-update matrix was used to shift the correlation

vector by an amount determined by the estimated velocity. However, the same matrix

can also be used to shift the correlation vector forwards or backwards to align the peak

value of the correlation vector with the estimated location of TDOA. This procedure is

outlined below.

First, the amount by which the vector needs to be shifted is computed by taking the

difference in the delay corresponding to the maximum correlation vector value and the

previous estimate of TDOA. Mathematically, if the maximum value of the correlation

vector is at index p, then the shift is given by:

δ = τ̂ −
(
pT + d̂

)
(3.40)

This is the amount by which the correlation vector estimate and covariance matrix

need to shift in order to align with the peak. However, it is important to note that we are

not intending to move the correlation vector with respect to the x axis. Consequently,

we must also update the offset value, d̂ to reflect the new time-difference values to

which the state vector values now correspond.

This centering step may be performed as a separate, additional step after the mea-

surement update. Alternatively, if the alternate time update formulation is used (Sec-

tion 3.1.2), then this step may be performed during the time update. Recall that in

the alternate time update formulation, the time update matrix is equal to the identity

matrix. To incorporate the re-centering, we may simply substitute the identity matrix

with the peak-centering matrix, while still using the process noise matrix associated
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3.5.2 Integrated Navigation Filter

To this point, nothing has been said about the estimation of velocity, other than that

it will be estimated by some external navigation filter with knowledge of the system

dynamics and multiple inputs. That velocity is then fed back into the correlation vector

estimate during the time update.

However, it is also possible to estimate the velocity of the spacecraft along the line

of sight to the pulsar without any other external inputs or knowledge of the spacecraft’s

acceleration. This is particularly useful in the case where initial position is not known, or

is known only very poorly. Two methods for simultaneously estimating the spacecraft’s

dynamic state are outlined below.

External Navigation Filter

The simplest approach for estimating the spacecraft’s dynamic state is to implement a

basic one dimensional position and navigation filter that takes as its measurement input

the output of the TDOA estimator. This method is similar to the architecture proposed

in Figure 3.1, except instead of estimating a full dynamic state of the spacecraft (three

dimensions of position, velocity, attitude, etc.), only one dimension of position and

velocity are estimated (Figure 3.10).

This implementation has the advantage of relative simplicity. Each component may

be treated individual and there is a degree of separation between the estimators which

makes the practical implementation somewhat simpler. However, this method suffers
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because it fails to account for the correlation between error in TDOA estimate and po-

sition and velocity estimate. This can lead to “feed-back” errors in which the estimated

variance of TDOA and velocity are far less than the true covariance. In the worst case

scenario this feed-back can cause the filter to diverge completely.

A simple “fix” to the issue of un-estimated error correlation is to simply inflate the

covariance of the TDOA and velocity estimates. This is a somewhat ad-hoc approach

which requires significant time to “tune” the inflation values, but once tuned gener-

ally produces reasonable results. The external navigation filter method was used in

generating the results of Section 3.4.

Joint Navigation Filter

The other alternative method of estimating velocity (and higher-order kinematic states,

if desired) is to include those kinematic states in the state vector itself. The new state

vector then becomes:

x =


ĉλ,λO [d]

v̂

â

 =



cλ,λO [d+ T ]

cλ,λO [d+ 2T ]
...

cλ,λO [d+ (m− 1)T ]

v̂

â


(3.41)

where ĉλ,λO [d] is the estimated correlation vector that has been used throughout this

chapter, v̂ = v · ` is the velocity along the line of sight to the pulsar, and â = a · ` is

the acceleration along the line of sight to the pulsar. Note that the number of kinematic

states to be estimated is flexible and up to the user. In space, where acceleration is a

smoothly varying function of position, it makes sense to estimate acceleration in addition

to velocity, however this may not make sense in all applications.

This formulation has the distinct advantage of jointly estimating correlation with

the other kinematic states, which allows the correlation between the error estimates

to also be estimated. This eliminates the error feedback problem associated with the
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external navigation filter. However, this comes at the expense of a larger covariance

matrix which is more computationally expensive.

In order to estimate this joint vector, a few modifications must be made to the

filtering equations, in particular the time update equations. Recall from Section 3.1.1

that the time-updated state vector is a function of the a posteriori state vector and the

estimated “peak shift.”

x̂−k = f( x̂+
j , δ̂j→k , wj,δ ) = Fj→k( δ̂j→k , wj,δ ) x̂−j (3.42)

However, we also note that the “peak shift” itself is a function of the kinematic

states of the spacecraft. Under the new formulation, the kinematics are included in the

state vector, so the time-update must be reformulated to reflect this relationship.

We begin by noting that the time-updated value of the state vector is given by:

x̂−k =



∑m
i=0 sinc (δ) x̂+

j,i∑m
i=0 sinc (δ − 1) x̂+

j,i
...∑m

i=0 sinc (δ −m+ 1) x̂+
j,i

v̂j + âj (k − j)T
âj


(3.43)

However, as stated above, the “peak shift” term δ is now itself a function of the

state vector. Recalling Equation (3.5), the peak shift term is written as

δ̂k→j =
v̂AO,k · `(S)(k − j)

c
(3.44)

Now however, we are estimating acceleration as well as velocity, so this term must

be included. We also note that we are estimating a single dimension of velocity along

the line-of-sight to the pulsar, so the dot product with the line-of-sight vector may be

dropped. Finally, for simplicity, if we estimate velocity in units of fractional speed of

light, then the division by the speed of light may be dropped. Therefore, the new peak
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shift may be written as:

δ̂k→j = v̂AO,j (k − j) + âAO,j
(k − j)2

2
(3.45)

Substituting this expression into the expression for the time-updated state vector

yields the following:

x̂−k = f( x̂+
j ) = (3.46)

∑m
i=0 sinc

(
v̂AO,j (k − j) + âAO,j

(k−j)2

2

)
x̂+
j,i∑m

i=0 sinc
(
v̂AO,j (k − j) + âAO,j

(k−j)2

2 − 1
)
x̂+
j,i

...∑m
i=0 sinc

(
v̂AO,j (k − j) + âAO,j

(k−j)2

2 −m+ 1
)
x̂+
j,i

v̂j + âj (k − j)T
âj


(3.47)

To derive the time-update matrices, we must take the Jacobian of the time-update

function. This yields the following time-update matrix:

Fj→k( x̂
+
j ) = (3.48)

sinc (δ) sinc (δ + 1) . . . sinc (δ +m− 1) ε0(k − j) ε0
(k−j)2

2

sinc (δ − 1) sinc (δ) . . . sinc (δ +m− 2) ε1(k − j) ε1
(k−j)2

2
...

...
. . .

...
...

sinc (δ −m+ 1) sinc (δ −m+ 2) . . . sinc (δ) εm−1(k − j) εm−1
(k−j)2

2

0 0 . . . 0 1 (k − j)T
0 0 . . . 0 0 1


(3.49)
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where

εi =

m∑
i=0

(δ + i− i) cos[δ + i− i] + sin[δ + i− i]
(δ + i− i)2

x̂+
j,i (3.50)

This time-update equation bears similarities to the previously derived time update

equations. The block corresponding to the correlation vector is in fact identical. The

column relating the correlation vector to the velocity is in fact the same as the process

noise mapping matrix in Equation (3.7). The column relating acceleration to correlation

includes a similar term for the derivative of the sinc function, but with the double

integral of acceleration rather than the single integral for velocity.

We now turn to the derivation of the new process noise mapping matrix. Now,

instead of process noise being noise in velocity, the new process noise will be noise in

the derivative of the highest order kinematic state, in this case acceleration.

x̂−k = f( x̂+
j , wacceleration ) = (3.51)

∑m
i=0 sinc

(
v̂AO,j (k − j) + âAO,j

(k−j)2

2 + w (k−j)3

6

)
x̂+
j,i∑m

i=0 sinc
(
v̂AO,j (k − j) + âAO,j

(k−j)2

2 + w (k−j)3

6 − 1
)
x̂+
j,i

...∑m
i=0 sinc

(
v̂AO,j (k − j) + âAO,j

(k−j)2

2 + w (k−j)3

6 −m+ 1
)
x̂+
j,i

v̂j + âj (k − j)T + w (k−j)2T 2

2

âj + w (k − j)T


(3.52)

Differentiating this expression with respect to the process noise yields the following

process noise mapping matrix:
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Lj =



ε0
(k−j)3

6

ε1
(k−j)3

6
...

εm−1
(k−j)3

6
(k−j)2T 2

2

(k − j)2T


(3.53)

The process noise variance, in this case, should represent how quickly in time the

spacecraft’s acceleration is expected to change. Of course, this is a function of position

and velocity, so determining an absolute value may not be possible especially in a “lost-

in-space” scenario. However, it is possible to come up with some fairly conservative

upper bounds on the rate of change of acceleration.

If we assume that the spacecraft is somewhere within our solar system, then we

can easily compute the steepest possible gravity gradient based on the masses and radii

of bodies in the solar system. We may also make assumptions about the maximum

speed of the spacecraft: the spacecraft cannot exceed the speed of light, but most likely

will not approach even one percent of that speed (the current record-holder for fastest

man-made object is the Parker Solar Probe, which will travel at 0.064% of the speed

of light). From these very reasonable assumptions, it is relatively straight-forward to

compute a maximum bound on the time-rate of change of acceleration, from which a

variance may be approximated. If more is known about the spacecraft’s trajectory and

the range of possible accelerations and speeds, the value used for the variance of the

time-rate of change of acceleration may be further refined, resulting in higher accuracy

estimates.

The time-update matrices presented here do not use the alternative time-update

technique presented in Section 3.1.2. However, this may be achieved by following a

similar technique to that presented in Section 3.1.2.

The measurement update for the deeply integrated kinematics state vector is the

same as that presented in previous sections; the only difference is that this vector will

have additional zeros corresponding to the fact that the kinematic states are not directly

measured.
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Nomenclature

Correlation Vector Estimation
d Amount by which the correlation vector time indices are offset from zero

cA(t),B(t) [p] The correlation between signals A(t) and B(t+ p)

n Dimension (number of taps) in the correlation vector

p Index to denote a specific correlation vector or FIR filter tap

wλ Ideal FIR filter for estimating signal λ from noisy measurement of signal

Data Association
bkg Indicates background photon flux

p Indices to designate signal source

Detector
AD Detector area

(
cm2

)

Physical Constants

c Speed of light (km/s)

Probability and Statistics

var (a) The variance of random variable a

E [a] The expected value of random variable a

N [µ, P ] A normal distribution with mean µ and variance P

U [l, u] A uniform distribution with lower bound l and upper bound u
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Signals and Measurements

tobs Total observation time (seconds)

pf Fraction of flux from pulsar that is pulsed

W Full width at half maximum of primary pulsar pulse

Λ̃A,k The number of photons measured at location A over time-step k

(Photons)

Λ̃dT=k,f=A The number of photons measured at location A over time-step k

(Photons)

λ
(p)
k , λ(p) (t) Expected number of photons at time index k, or expected photon flux

at time t, from signal source p (photons, photons/second)

Tp The period of pulsar p (seconds)

D Integer delay

Si ith signal source

sinc (j) The sinc function
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State Estimation
ρ
A(S)
t Range to object A, at time t, along line-of-sight vector to source S (km)

rAt Position of A, at time t (km)

aAt Acceleration of object A, at time t
(
km/s2

)
qAt Attitude of object A, at time t (radians)

ωAt Angular velocity of object A at time t (radians/second)

O Denotes the navigation frame origin

j, k Time-step indices

t Current time (seconds)

τ
A(S)
t Time-difference of arrival of signal from signal source S measured be-

tween vehicle A and navigation frame origin (seconds)

m Dimension of state vector

x State vector

P Covariance of state vector

yt,a Measurement of scalar quantity a

vt,a Scalar measurement error of measured quantity a at time t

δk,j→k Peak shift from time j to k

Rt,a Variance of measurement noise in measured quantity a

δyt,a Measurement residual for measured scalar quantity a at time t

St,a Variance of measurement residual for measured quantity a at time t

wt Error in time update (process noise) at time t

Qt Variance of process noise at time t

n Length of time between filter time-steps (seconds)

[·]− Indicates a priori value

[·]+ Indicates a posteriori value

·̂ Indicates estimated value

a Indicates vector quantity

a Indicates scalar quantity
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Misc
In×n The nxn identity matrix

i Iterator to designate summation index

A,B Indices to designate spacecraft(s)

`(S
i) Unit vector pointing towards ith signal source
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Chapter 4

Attitude Estimation

The ability of a spacecraft to determine its attitude is critical for the implementation

of an XNAV navigation scheme, as will be shown in Chapter 5. Additionally, attitude

determination is important in its own right. The ability of a spacecraft to determine its

attitude is critical for many aspects of a space mission.

Star trackers present an ubiquitous and affordable technique for attitude determina-

tion [53, 54, 55, 56]. Star trackers function by using optical imagery of visible stars to

identify the relative bearing angle from the spacecraft to known stars. Using the angles

to multiple known stars, the attitude of the spacecraft may be determined. In theory

only two known stars are needed, but in practice three stars are needed for the purpose

of uniquely identifying the stars by their relative positions to one another.

While star trackers are both accurate and readily available, the also suffer from

limitations. The primary limitation of star trackers is that they cannot function in

environments where the star tracker cannot identify guide stars. This can occur when

the spacecraft is operating in proximity to objects which block or reflect light. For

instance, the star trackers on Cassini were suspended for up to five hours when Saturn,

the rings, or other bright bodies entered the star-tracker field of view [57, 58]. Other

environments in which a star tracker might not function include extraterrestrial volcanic

plumes, comet tails, and during landing phases in which dust is stirred up. The Apollo

missions were unable to use their star trackers during waste-dumps due to the reflection

of light off of waste “fooling” the star trackers [59].

While optical star-tracking suffers from the limitation described here, star-tracking
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need not be performed in the optical wavelengths. Many stars are bright in soft and

hard x-ray wavelengths. The same principles applied to optical star trackers could

theoretically be applied to stars that are x-ray bright. A spacecraft could in theory

determine its attitude using angle-of-arrival measurements from x-ray stars.

Such an attitude determination system could potentially function in environments

where star-trackers fail, since many of the sources of interference discussed above would

not emit x-rays. Furthermore, an x-ray detector capable of measuring both time and

angle of arrival of x-ray photons could theoretically be used to determine both posi-

tion and attitude of a spacecraft, offering a complete, six-degree of freedom navigation

solution from a single instrument.

This chapter is devoted to the derivation of attitude estimation algorithms which

could be used to estimate attitude from x-ray photon angle of arrival measurements. We

assume that the spacecraft is equipped with an inertial measurement unit (IMU) whose

angular rate measurements may be numerically integrated to yield an attitude solution.

Attitude errors due to gyro noise and biases are corrected by periodic photon angle-of-

arrival measurements. In this chapter, we assume for the sake of simplicity that we are

able to uniquely associate incoming photons with their signal source of origin. Of course

in reality this is not the case; the problem of data association will be addressed in detail

in Chapter 5. The purpose of this chapter is to present the estimation algorithms that

would be used if one could properly associate photons with their source of origin, and

then those algorithms will be used in the Chapter 5 to derive the joint data association

and estimation algorithm.

4.1 Quaternions and Spatial Rotation

In this work, attitude is parameterized using the attitude quaternion. For completeness,

an overview of how a quaternion may be used to represent rotation and its properties

is given here.

We begin by noting that, in general, a three-dimensional rotation from one frame

to another may be parameterized by a unit vector axis of rotation, v =
[
vx vy vz

]T
and an angle of rotation about that vector, θ (Figure 4.1).

A rotation may be completely characterized by this unit vector and the rotation
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v

Frame N

Frame B
θ

ūN2

ūN1

ūN3

ūB1

ūB2

ūB3

Figure 4.1: Rotation from navigation frame N to spacecraft body frame B by axis-angle
rotation
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about the unit vector. While simply storing the vector and angle (i.e.
[
v θ

]T
) offers

relative simplicity, it is advantageous from a computational standpoint to store the

vector in a slightly different form. This form is defined as follows:

q =


q1

q2

q3

q4

 =


cos
(
θ
2

)
vx sin

(
θ
2

)
vy sin

(
θ
2

)
vz sin

(
θ
2

)

 (4.1)

This is the quaternion representation for spatial rotation. 1 While it is not im-

mediately obvious why it would be advantageous to parameterize rotation in such a

non-intuitive format, the quaternion has a number of beneficial properties over other

formulations of attitude such as Euler angles.

4.1.1 Composition of Spatial Rotations

Two sequential rotations may be composed to form a single rotation. If two rotations

are represented by quaternions (p and q) the rotation resulting from first rotating by

p and then by q is given by:

w = p⊗ q (4.2)

where ⊗ is the Hamilton product. The Hamilton product is defined as follows:

p⊗ q =


p1q1 − p2q2 − p3q3 − p4q4

p1q2 + p2q1 + p3q4 − p4q3

p1q3 − p2q4 + p3q1 + p4q2

p1q4 + p2q3 − p3q2 + p4q1

 (4.3)

1It should be noted that the order of the terms is not particularly important; specifically, the place-
ment of the cosine term as the first term in the vector is arbitrary. A number of texts place the cosine
term as the last term in the quaternion. Either form is equally acceptable; the important point is to
ensure that consistency is maintained throughout.

80



It is important to note that quaternion multiplication is not commutative, and so

the final product is dependent upon the order in which the quaternions are multiplied.

4.2 Attitude State Vector

In many attitude determinations filters which fuse IMU measurements with an attitude

measurement device such as a star tracker, the attitude quaternion itself is not stored

in the state vector. Rather, the state vector for attitude consists of three attitude error

states, along with three gyro bias estimates.

We define the attitude sub-component of the state vector as follows:

x̂q =
[
δ̂v b̂

]T
(4.4a)

=
[
δφ δθ δψ b̂φ b̂θ b̂ψ

]T
(4.4b)

=
[
(φ− φ̂ ) (θ − θ̂ ) (ψ − ψ̂ ) b̂φ b̂θ b̂ψ

]T
(4.4c)

Of course, even though the attitude state vector itself does not contain the atti-

tude quaternion, the attitude quaternion must still be stored in memory as well. We

use the multiplicative quaternion error representation to write the following relation-

ship between the estimated attitude quaternion, the attitude error states, and the true

quaternion [60].

qTrue = δq(δv )⊗ q̂ (4.5)

This formulation implies that the attitude error term, δq(δv ) is defined in terms

of the body frame, while the attitude quaternion and estimated attitude quaternion are

both defined in the global frame.

Also, we note that in this formulation we are only estimating the attitude error

states δv and the gyro bias vector b̂ . However, in general any number of auxiliary

attitude-related terms could be estimated in the state vector including gyro-scale factors.

With this definition of the state vector, we may now derive the needed equations
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for an attitude estimator. Attitude estimation is not a new topic, and much of the

needed algorithms are widely available in literature. For brevity, we omit the derivations

which do not differ from what is available in literature, and focus primarily on the new

techniques developed in this dissertation which are necessary for the data association

filter described in Chapter 5. However, a thorough treatment of attitude estimation is

available [60].

4.3 Attitude Measurement Update Equations

We begin with the assumption that when a photon arrives, the detector measures the

photon’s angles of arrival (AOAs); specifically the arrival azimuth and elevation angle

(Figures 4.2 and 4.3). In x-ray observatories such as Chandra, the detector pixel at which

the photon is detected corresponds directly to the azimuth and elevation angles through

a series of conversions which can be derived based on the configuration of the detector

during the observation. We assume that any errors associated with the mapping of

the of detector pixel to AOA are negligible in comparison to the other sources of AOA

measurement error.

Next, we would like to compute a measurement update matrix which relates the

photon’s AOAs to the attitude state vector. To do so, we assume (for now) that we

know the source of the photon in question, and have the source’s coordinates in a global

reference frame. We present two methods which may be used to produce an attitude

measurement matrix.

4.3.1 Unit Vector Matching

For the sake of comparison, we will briefly review a common approach found in literature

for updating the attitude state vector based on a angle measurement. In this method,

an equivalent unit vector is computed from the angles of arrival [60]. This unit vector

is then compared to the unit vector pointing to the source by taking the cross product

of the two vectors (either transforming the source unit vector to the estimated body

frame, or transforming the photon unit vector to the global frame). The cross product

is related to the attitude estimate error, and this vector quantity is used to update the

attitude.
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Detector plane

Detector boresight
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Figure 4.2: AOA and unit vector
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β

α

ūB2

ū
B 3

Detector plane

Projected sky coordinates
(body frame)

Detector measurement
coordinates

Figure 4.3: Photon angle of arrival measurement as viewed from the detector focal
plane. It will be noted that the actual detector coordinates of the photon arrival will
be a “mirror image” of the photon’s sky coordinates.
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We note here that, in general, a unit vector ū may be computed from a set of angle-

of-arrival measurements consisting of an azimuth measurement, α and an elevation

measurement β, as illustrated in Figure 4.2 and Figure 4.3.

ū1 = cos (α) cos (β) (4.6a)

ū2 = cos (α) sin (β) (4.6b)

ū3 = sin (β) (4.6c)

Similarly, the equivalent azimuth and elevation measurements may be computed

from a unit vector measurement.

α = arctan 2(ū2, ū1) (4.7a)

β = arcsin(ū3) (4.7b)

As an aside, the reader may find it useful to note the approximate relationship

between the unit vector components and the angle of arrival measurements which may

be derived via the small-angle approximation. We note that if the angles of arrival are

relatively small, then

ū1 ≈ 1 (4.8a)

tan (α) =
ū2

ū1
=⇒ α ≈ ū2 (4.8b)

sin (β) = ū3 =⇒ β ≈ ū3 (4.8c)

While the small-angle approximations are not used in this derivation, the approxi-

mate relationships may be useful in relating the two types of arrival vector parameteri-

zations.

In the unit vector matching approach, a unit vector is computed for all attitude

measurements, and that unit vector is then used in the state vector measurement up-

date. This approach is convenient because it presents a universal measurement update
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equation which may be used for many (if not all) types of attitude measurements. How-

ever, it is notable that the vector matching approach may introduce a third, dependent

measurement quantity. This can be seen by noting that the unit vector consists of three

values, while it is computed from only two measured values. This third dependent vari-

able is not inherently problematic for the measurement update, but as will be shown,

it causes problems in data association. Consequently, we seek an alternate approach

that does not introduce a dependent variable into the measurement. This approach is

outlined below.

4.3.2 Angle Measurements

While the unit-vector matching approach generates a unit vector from the angle-of-

arrival measurements and uses that unit vector in the state vector measurement update,

it is also possible to directly update the state from the angle-of-arrival measurements

without computing a unit vector. In order to do so, we must write the measured

quantities y =
[
α β

]
as a function of the state vector. More specifically, we would

like to formulate an expression for these measurements in terms of the attitude error;

that is, the (intrinsic, body-frame) changes in roll, pitch and yaw that would correct

the estimated attitude to the true attitude.

We first of all note that, using the relationship in Equation (4.7), the predicted

measurement values may be computed by transforming the point source coordinates

into the local body frame.

ŷ =
[
α̂ β̂

]T
(4.9a)

=
[
arctan 2(ūB2 , ū

B
1 ) arcsin(ūB3 )

]T
(4.9b)

We then note that the true measurement may be written as a function of the attitude

state error and the predicted measurement. We further note that if there was no error in

the roll estimate, then true measurement would be equal to the predicted measurement

plus the error in yaw and pitch, and measurement noise, as shown below (Figure 4.4).
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δψ

δθ

α− α̂ = δψ + vα

ŷ =
[
α̂ β̂

]T

y = [ α β ]T

β − β̂ = δθ + vβ

β̂
α

β

α̂

Figure 4.4: Estimated and true measurements with pitch and yaw error only
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y =
[
α β

]T
=

[
α̂ + δψ + vα

β̂ + δθ + vβ

]
(4.10)

Of course, the case in which roll is known perfectly but pitch and yaw are unknown

is not a meaningful one. In the case where there is roll error in addition to error in

pitch and yaw, the true measurement will be the result of the predicted measurement,

rotated from the estimated coordinate frame to the true coordinate frame, plus the

measurement noise and the error in yaw and pitch (Figure 4.5).

y =
[
α β

]T
=

δψ + α̂ cos(δφ)− β̂ sin(δφ) + vα

δθ + α̂ sin(δφ) + β̂ cos(δφ) + vβ

 (4.11)

From here, we see that we may easily derive the measurement matrix by taking the

partial derivative of the measurement function with respect to the states to be measured.

Hδv =
∂ yδv
∂δv

∣∣∣∣
δv=0,v =0

=


∂α
∂δφ

∂α
∂δθ

∂α
∂δψ

∂β
∂δφ

∂β
∂δθ

∂β
∂δψ



∣∣∣∣∣∣∣∣∣∣∣
δv=0,v =0

(4.12a)

=

− α̂ sin(δ φ̂ )− β̂ cos(δ φ̂ ) 0 1

α̂ cos(δ φ̂ )− β̂ sin(δ φ̂ ) 1 0


∣∣∣∣∣∣∣
δv=0,v =0

=

− β̂ 0 1

α̂ 1 0

 (4.12b)

The gyro bias states are not directly measured by the photon angle of arrival. Con-

sequently, the entire attitude state update matrix may be written as:

Hδv,b =

− β̂ 0 1 0 0 0

α̂ 1 0 0 0 0

 (4.13)
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δψ

α = δψ + α̂ cos(δφ)− β̂ sin(δφ) + vα

β = δθ + α̂ sin(δφ) +

β̂ cos(δφ) + vβ
δθ

δφ

ŷ =
[
α̂ β̂

]T

y = [ α β ]T

β̂

α

β

α̂

Figure 4.5: Estimated and true measurements with roll, pitch and yaw error
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It is notable that this measurement equation allows us to compute the measurement

update directly from physically measurable quantities, with physically measurable vari-

ances, rather than introducing a third dependent measurement variable. It is also

notable that this measurement update matrix is relatively intuitive, as the quantities

measured correspond rather directly to the state variables of interest.

The estimated a posteriori attitude errors may be used to update the attitude quater-

nion. In order to do so, we compute the quaternion corresponding to the computed

attitude error state, take the product of the error quaternion and the a priori quater-

nion to compute the a posteriori attitude quaternion estimate, and finally normalize

the resulting quaternion.

δq ≈

[
δv/2

0

]
q̂ ∗ = δq q̂ − q̂ + =

q̂ ∗

|| q̂ ∗ ||
(4.14)

4.4 Overview of Attitude Estimation Algorithm

For completeness, and for reference in Chapter 5, the entire attitude estimation algo-

rithm is presented here. As noted above, substantial portions of this algorithm are

taken directly from literature, and thorough derivations of these equations are readily

available [60].

The equations for updating the attitude state vector in time from time-step j to

time-step k are given below:
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ω̂+
j = ω+

j − b̂
+
j (4.15a)

q−k =

cos
(

1
2 || ω̂

+
j ||∆tj→k

)
I3×3 − [Ψ]× Ψ

ΨT cos
(

1
2 || ω̂

+
j ||∆tj→k

) q+
j (4.15b)

Ψ =
sin
(

1
2 || ω̂

+
j ||∆tj→k

)
ω̂+
j

|| ω̂+
j ||

(4.15c)

P−k = Fj→k P
−
k F T

j→k + Qj→k (4.15d)

Fj→k =

( ω̂+
j

)×
03×3

03×3 I3×3

 (4.15e)

Qj→k =

(σ2
ω∆tj→k + 1

3σ
2
b∆t3j→k

)
I3×3 −

(
1
2σ

2
b∆t2j→k

)
I3×3

−
(

1
2σ

2
b∆t2j→k

)
I3×3

(
σ2
ω∆tj→k

)
I3×3

 (4.15f)

where

• ω̂+
j is the angular rate measurement measured by the IMU in the body frame

• ∆tj→k is the time elapsed between time-step j and k

• b̂+
j is the estimated angular rate measurement bias

• [·]× is the skew-symmetric matrix computed from a 3× 1 vector

• σ2
ω = var (ωmeas − ωTrue ) is the variance of the angular rate measurement error

• σb = var
(
bk − bj

)
is the variance of the angular rate bias random process noise

It is notable in Equation (4.15) that the value of the state vector does not change

during the time update. This is because the state vector consists of the attitude error

state (which is set to zero after the measurement update) and the IMU angular rate

bias state, the dynamics of which are not modeled in this estimator.

The measurement update equations for updating the attitude state vector based on

91



an angle-of-arrival measurement are given below:

yk =
[
αk βk

]T
=

[
α̂k + δ ψk + vα

β̂k + δ θk + vβ

]
(4.16a)

ŷk =
[
α̂ β̂

]T
=
[
arctan 2(ūB2 , ū

B
1 ) arcsin(ūB3 )

]T
(4.16b)

δyk = yk − ŷk (4.16c)

Hk =

− β̂k 0 1 0 0 0

α̂k 1 0 0 0 0

 (4.16d)

Rk =

[
σ2
α 0

0 σ2
β

]
(4.16e)

Sk = Hk P
−
k Hk

T + Rk (4.16f)

Kk = P−k Hk
T Sk

−1 (4.16g)[
δv+

k

b+
k

]
=

[
03×1

b−k

]
+ Kk δyk (4.16h)

δq ≈

[
δv/2

0

]
(4.16i)

q̂ ∗ = δq q̂ − (4.16j)

q̂ + =
q̂ ∗

|| q̂ ∗ ||
(4.16k)

δvk = 03×1 (4.16l)

where σα = var (δ αk ) , σα = var (δ αk ) are the variances of the angle-of-arrival mea-

surement errors.

The component of the state vector corresponding to the attitude error state, δv,

is computed solely for the purpose of updating the attitude quaternion. After this

is complete, the estimated value of the attitude error state is zero, since the attitude

estimate has already been updated to account for the estimated error. Consequently, it

is important that this component of the state vector be set to zero after the quaternion

is updated, as reflected in Equation (4.16l).
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Nomenclature

Probability and Statistics

var (a) The variance of random variable a

Signals and Measurements

ζi Vector of angle-of-arrival measurements at of photon i
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State Estimation
qAt Attitude of object A, at time t (radians)

δvAt Error in attitude estimate of object A at time t (radians)

b Bias of gyro measurement of angular velocity in axis φ (radians/second)

b Vector of gyro biases in three axes (radians/second)

ωAt Angular velocity of object A at time t (radians/second)

φAt Roll angle of object A at time t (radians)

θAt Pitch angle of object A at time t (radians)

ψAt Yaw angle of object A at time t (radians)

α Azimuth angle (radians)

β Elevation angle (radians)

N Denotes the global navigation frame

B Denotes the spacecraft body frame

ūBA Unit vector to object A in frame B

j, k Time-step indices

x State vector

P Covariance of state vector

yt,a Measurement of scalar quantity a

H Measurement update matrix for measured quantity a

vt,a Scalar measurement error of measured quantity a at time t

Rt,a Variance of measurement noise in measured quantity a

δyt,a Measurement residual for measured scalar quantity a at time t

St,a Variance of measurement residual for measured quantity a at time t

wt Error in time update (process noise) at time t

Qt Variance of process noise at time t

[·]− Indicates a priori value

[·]+ Indicates a posteriori value

·̂ Indicates estimated value

a Indicates vector quantity

a Indicates scalar quantity
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Misc

In×n The nxn identity matrix
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Chapter 5

Data Association and Joint

Range and Attitude Estimation

In Chapter 3 and Chapter 4, estimators for determining range and attitude based on

photon arrival measurements from astrophysical signals of opportunity were derived.

However, in both of these cases, it was assumed that the estimators “know” which

photons originate from which signal sources, or that they are able to correctly associate

photons with the correct signal sources.

In reality, the estimator must have a means of correctly associating photons with

the correct signal source. In this chapter, we will derive a technique for data association

based upon the Joint Probabilistic Data Association Filter (JPDAF) [61]. We will then

demonstrate the efficacy of this method using both simulated data and x-ray observatory

data.

5.1 Naive Data Association

As a first approximation to the data association problem, we consider a naive approach

to associating photons with the correct signal sources. We do so because it helps illus-

trate the challenge of the data association problem. Later we describe a more sophisti-

cated approach used for PNT estimation derived in this dissertation.

Consider the scenario depicted in Figure 5.1, where a single pulsar is in the field

of view (FOV) of the x-ray detector being used for PNT. It is clear by inspection that
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Pulsar

±3σ

accept photons within
±3σ bound

reject photons outside of ±3σ bound

Figure 5.1: A naive approach to data association

the photon’s angle of arrival, in conjunction with the attitude estimate, can be used

to estimate the coordinates from which the photon originated in the navigation frame.

Using this information, the angle between the photon’s arrival vector and the vector to

an arbitrary signal source may be computed. If the angle between these two vectors

were below a certain threshold, then the photon would be associated with that signal

source (Figure 5.1).

The threshold below which the angle between the two vectors must be depends upon

the accuracy to which the spacecraft’s attitude is known. A threshold based on a multi-

ple of the attitude error standard deviation estimate would statistically guarantee that

a certain percentage of photons originating from the signal source would be associated

with that signal source. For example, if the rejection threshold is an angle greater than

2σδv, then statistically 95% of photons originating from any given signal source would

be correctly associated with that signal source, whereas if the threshold was 3σδv as

shown in Figure 5.1, then 99.7% of the photons would be associated correctly.

If this algorithm is to be used, a trade-off must be made between the number of

photons which are correctly associated and the number of background photons which

are also incorrectly associated. As the rejection threshold is increased, more background

photons will be erroneously associated with that signal source. If the attitude is known

to a high enough accuracy, this might not be a problem since 3σδv would be a relatively

small quantity. However, if the attitude uncertainty is relatively large, and if the back-

ground flux is high compared to the source fluxes, the background photons may quickly

“drown out” the signal source photons, resulting in a signal to noise ratio that quickly
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Figure 5.2: A measurement update in the presence of source uncertainty

approaches zero. Both of these conditions are easily realizable in practice; consequently,

a more intelligent data association approach is needed. This is particularly true if more

than one x-ray source is in the field of view of the x-ray detector.

5.2 Joint Probabilistic Data Association Filter

To address the problem of data association, we turn to the Joint Probabilistic Data As-

sociation Filter (JPDAF) algorithm [61]. In what follows, we will show how the JPDAF

algorithm may be used on joint position and attitude estimation using measurements

of x-ray photons from pulsars. This work was initially described in [62].

The basic framework of the JPDAF algorithm is depicted graphically in Figure 5.2,

and proceeds as follows: Once an x-ray photon is received by the x-ray detector, the
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algorithm iterates through all the possible signal sources, and for each signal source

computes the probability that the measurement originated from the given signal source.

This probability is referred to as the association probability. After the probabilities are

computed, the most likely signal sources are kept, while the less likely signal sources are

rejected. The remaining signal sources are once again iterated over, and for each signal

source, the updated state vector and covariance are computed, assuming that the given

association is correct. Finally, the updated state vector is approximated as a Gaussian

mixture of all of the possible updated states, weighted according to each association’s

probability. The time update then proceeds in the same manner as in a standard EKF.

Each step in the JPDAF algorithm is given in more detail below.

5.2.1 Association Probabilities

The first step in the JPDAF algorithm is to compute the probability of association

for each signal source. To compute the association probability, we use Bayes’ rule for

conditional probability.

Pr
[
Ap|ti, ζi, x̂−t

]
=

Pr
[
ti, ζi|Ap, x̂−t

]
Pr [Ap]

Pr
[
ti, ζi, x̂

−
t

] (5.1)

where

• Ap is the event that a photon measured by the detector originated from signal

source p, where the subscript p denotes the pth signal source

• ti is the time-of-arrival measurement

• ζi =
[
α β

]
are the angle-of-arrival measurements

• x̂−t is the a priori state vector estimate

The derivation of each term in the expression for probability is briefly presented be-

low. We begin by noting the denominator on the right-hand side of Equation 5.1 is

independent of the association event Ap and is therefore a constant that will appear in

each probability term. Consequently we do not need to compute it, since we can simply

divide it out from all terms. The other two terms in the equation, however, must be

computed directly.
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Measurement Probability

The first term in the numerator of Equation 5.1 is the probability of measuring a photon

at time ti and angles ζi =
[
α β

]
, given that the photon in question did in fact originate

from signal p, expressed mathematically as Pr
[
ti, ζi|Ap, x̂−t

]
. We begin by making the

approximation that the angle of arrival and time of arrival are statistically independent

of each other under the assumption that we know the origin of the photon. We justify

this assumption by noting that for a given signal source, ti depends on the distance

between the signal source and the detector, while ζi depends on the attitude of the

detector. While the position and attitude estimate errors of the spacecraft are coupled,

the effects of that coupling are small enough to be neglected, which allows us to assume

independence. Therefore, this probability may be split into two separate terms.

Pr
[
ti, ζi|Ap, x̂−t

]
= Pr

[
ζi|Ap, x̂−t

]
Pr
[
ti|Ap, x̂−t

]
(5.2)

The first term on the right-hand size of Equation 5.2 is the probability of measuring a

photon from signal source p at angle-of-arrival ζi, and incorporates the current attitude

estimate. We will assume that the state estimate error and the AOA measurement error

are both Gaussian. This implies that, given the photon did originate from source p, the

attitude measurement residual may be described as:

δyζ ∼N
[
0, Sζ

]
(5.3)

where Sζ is the measurement residual variance, as defined in Equations 4.16c and 4.16f,

and is a function of the a priori state vector, x̂−t . Consequently, the angle-of-arrival

probability may be written from the standard normal distribution probability density

function (PDF) as follows:

Pr
[
ζi|Ap, x̂−t

]
=
e−

1
2
δyζ

T Sζ
−1 δyζ√

det(2π Sζ )
dζ (5.4)

It is important to remember that the PDF is not a direct expression for probability,

and normally must be integrated over some range of values to compute the probability

of the random variable falling in that range. We avoid this step by including the final
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term on the right-hand side, dζ. This term is an infinitesimally small range of angles.

As long as this term is present in every association probability, we may simply divide

it out of every term (leveraging the assumption that the probabilities must sum to

one). However, we note here the importance of consistency in the choice of attitude

measurement matrices. The dζ term must be the same for every probability that is

computed. If we use the attitude measurement update described above, then dζ =

dαdβ. However, it the more standard unit-vector of arrival approach is used then

dζ = du1du2du3. The main point here is that the choice must be consistent across all

the computed probabilities.

The next term to be computed is the time-of-arrival probability, Pr
[
ti|Ap, x̂−t

]
.

Unlike angle of arrival, the time-of-arrival is not normally distributed. Rather, photon

arrival times are a Poisson process, or in the case of a time-varying flux, the arrival times

are non-homogeneous Poisson process (NHPP). Event times governed by an NHPP are

distributed as follows [63].

ft (t|λ (t)) = λ (t) e−
∫ t
s λ(t)dt (5.5)

where λ(t) is the photon flux from the signal source at time t and s is some start time

prior to the photon arrival time. We may make use of the memory-less property of

Poisson/exponential processes to simplify this expression. It may be shown that for a

exponentially distributed arrival times:

Pr [t > t+ δt|t > t] = Pr [t > δt] (5.6)

That is to say that the fact that an event has or has not occurred in the recent past has

no bearing on the probability of an event occurring at a future time. At a given photon

arrival time, we can let δt in Equation 5.6 approach zero. Then, our probability may

be simplified as:

Pr
[
t|λ(t), x̂−t

]
] = λ(t)dt (5.7)

Once again, as with the computation of angle-of-arrival probability, we must include

the differential term dt. This will be divided out later, but must be present in every
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Figure 5.3: Uncertainty in the spacecraft’s position results in uncertainty in the esti-
mated flux at t.

association probability that we compute.

It is important to note the fact that the term λ refers to the photon flux from the

signal source at the spacecraft’s current time (t) and location, or range (ρ). This flux

is equal to the flux at the origin (λO) delayed by the true TDOA (τ (S) ). However, the

true TDOA is a function of position τ̂ (S) = r̂ti · `
(p), and its true value is not known

exactly. Since the TDOA is not known, the flux from the signal source is not known

exactly either. Instead, we can only compute the expected value of the flux.

At first, it may seem that this problem is trivial: We may simply evaluate the flux

at the estimated TDOA to obtain its expected value. However, this approach is not

correct, because flux is non-linear in t. To illustrate why this is problematic, consider

Figure 5.3.

This figure illustrates how an incorrect estimate of position can result an incorrect

estimate of flux at t. Furthermore, as shown in the figure, the incorrect estimate of

flux can vary dramatically from the true flux, especially if the flux time-profile is very

discontinuous. As shown in Equation (5.7), the time of arrival probability term simply

the estimated flux at that time. Therefore, if the estimate of flux is dramatically different

from the true flux, the computed time of arrival probability will either be erroneously

high or low, resulting in an incorrect association probability.

To address this problem we may compute the expected value of flux, given the
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estimate and uncertainty of the spacecraft’s position. The expected value is given by

the following equation:

E
[
λO

(
ti + τ̂ (S)

)]
=

∫ ∞
−∞

λO (t) f(t|τ, σ2
τ )dt

=

∫ ∞
−∞

λO (t+ t)
1√

2πστ 2
e

(t+t−τ)2

2σ2
τ dt

(5.8)

This integral cannot be directly computed. It could be numerically computed for

each photon, but this could become computationally expensive. Instead, we approxi-

mate the PDF of the spacecraft’s TDOA estimate as a moment-matched uniform dis-

tribution, which yields the following approximation.

E
[
λO

(
ti + τ̂ (S)

)]
≈ 1√

12στ

∫ ti+ τ̂ +
√

3στ

ti+ τ̂ −
√

3στ

λO (ti + t) dt

=
FλO(ti + τ̂ +

√
3στ )− FλO(ti + τ̂ −

√
3στ )√

12στ

=
FλO |

ti+ τ̂ +
√

3στ

ti+ τ̂ −
√

3στ√
12στ

(5.9)

where FλO =
∫
λO (t) dt is the indefinite integral of the flux profile with respect to time.

This expression is the result of approximating the normally distributed TDOA esti-

mate error as a uniform distribution with variance equal to that of the original normal

distribution. The integral in the approximation above is easily obtained because the

indefinite integral can be numerically computed once for each signal source. The results

of this indefinite integral can then be used to compute the definite integral.
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In summary, the measurement probability may be written as

Pr
[
ti, ζi|Ap, x̂−t

]
] =

e−
1
2
δyζ

T Sζ
−1 δyζ√

det(2π Sζ )
+ E

[
λO

(
ti + τ̂ (S)

)]
dtdζ (5.10a)

=
e−

1
2
δyζ

T Sζ
−1 δyζ√

det(2π Sζ )

FλO |
ti+ τ̂ +

√
3στ

ti+ τ̂ −
√

3στ√
12στ

dtdζ (5.10b)

Background Probability

The above expression describes the measurement probability for the case in which the

photon originates from a discrete point source. However, photons may also originate

from the ambient x-ray background. This probability also must be computed.

The time-of-arrival term remains the same, simply replacing the signal source flux

with the x-ray background flux. Also, since background flux is assumed to be con-

stant, the expected value is simply equal to the constant value of background flux, so

the definite integral term may be replaced with the constant value of background flux.

However, the expression derived for angle-of-arrival probability does not accurately rep-

resent the background photon case. This is because photons from the x-ray background

are distributed uniformly in two dimensions (or at least they may be approximated as

such). For the background case, we may say:

ζi|Abkg, x̂
−
t

] ∼ U [−f/2, f/2] (5.11)

where f is detector field of view. Consequently, the angle-of-arrival probability for a

background photon may be written as:

Pr
[
ζi|Abkg, x̂

−
t

]
] =

1

Ω
dζ =

1

2π(1− cos(f))
dαdβ (5.12)

Equation is derived from a two-dimensional uniform distribution over the solid angle

subtended by the detector’s field of view [64]. This particular expression assumes a

conical field of view, but similar expressions could be derived for other field of view

geometries.

It is here that we see the advantage of the attitude measurement update equation
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that uses azimuth and elevation directly. It is straight-forward to compute the uniform

distribution probability with dα and dβ as the differential quantities. However, with the

introduction of a third dependent variable, as is required by the unit vector measurement

update, it is not clear how to model the uniform distribution. Consequently, for the

computation of probabilities, it is simpler to use the direct approach shown here.

In summary, the measurement probability for a background photon may be written

as follows.

Pr [ti, ζi|Abkg] =
1

Ω
λbkgdtdζ =

1

2π(1− cos(f))
λbkgdtdαdβ (5.13)

Prior Association Probability

The next term in Equation 5.1 is Pr [Ap]. This term is often referred to as the “prior”

probability, because it describes the probability of the event occurring prior to the

measurement being taken, and independent of the measurement values.

Because this term is to be computed independently of the measurement or the state

vector, it is dependent only on the average flux of each signal source. This probability

may be written directly as follows for each signal source.

Pr [Ap] =
E
[
λ(p)

]
λ(bkg) +

∑N
i=1 E

[
λ(i)
] (5.14)

where

• E [·] is the expected value

• i is the index for each x-ray source

• N is the number of sources in view.

Similarly, the probability of seeing a photon from the ambient x-ray background may

be computed as follows.

Pr [Abkg] =
λ(bkg)

λ(bkg) +
∑N

i=1 E
[
λ(i)
] (5.15)
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The final step in the computation of probabilities is to sum up all the computed

probabilities, then divide each probability by the computed sum. In this way we remove

the differential angle and time terms, as well as the constant denominator term.

5.2.2 Joint Measurement Update

Having computed the association probabilities for all the possible association events,

the next task is to compute the updated state vector. Before we do this, it is beneficial

to go through the association events, and reject those events which have a probability

below some very small threshold. This step is not strictly necessary, but it does save on

computational time and is therefore beneficial from an efficiency standpoint.

After this step, we iterate through the remaining association events, and compute

the updated state vector for each association event, assuming that the association event

is correct. We note that the state vector is a combined state vector which contains both

the attitude estimate and the TDOA estimate, (or quantities which may be used to

directly compute attitude and TDOA). The joint state vector is written as:

x =

[
x̂q

x̂τ

]
P =

[
Pq Pqτ

Pτq Pτ

]
(5.16)

Once again, we note that a method for estimating x̂τ is derived in Chapter 3.

For each measurement association, the a posteriori state vector is computed as if that

measurement association were the correct one. These updated state vectors are then

used to compute a sort of “weighted average” state vector, by treating the true state

vector’s distribution as a Gaussian mixture. The final updated state vector may then

be written as follows.

x̂+
k =

N∑
i=1

wi x̂
+
k|Ai (5.17)

where wi = Pr
[
Ap|ti, ζi, x̂−t

]
. Similarly, we compute the updated covariance based

upon the covariance of a Gaussian mixture.

P+
k =

N∑
i=1

wi

(
P+
k|Ai + ( x̂+

k − x̂
+
k|Ai )( x̂

+
k − x̂

+
k|Ai )

T
)

(5.18)
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5.3 Results

The algorithm described above is validated using simulated data as well as data collected

from x-ray detectors in space. We describe and discuss these validation experiments

below.

5.3.1 Monte Carlo Simulation Results

In order to verify the performance of the estimator presented here, a series of Monte

Carlo simulations was performed. The simulations show that the full, seven degree of

freedom PNT solution (position, orientation and time) can be estimated. However, the

solution is sensitive to initial conditions, in particular the error in the initial attitude

estimate. Thus, the simulation results are presented parametrically and show the effects

of initial attitude uncertainty on the final position estimate error.

The simulations were performed as follows. For each signal source, photon measure-

ments were generated containing angle and time of arrival measurements. Additionally,

background photon measurements were generated based on empirical models for hard

x-ray background flux.[48]

The JPDAF estimator results were bench-marked against two other estimators. The

first estimator is an unrealizable “ideal” estimator. The “ideal” estimator had perfect

knowledge of which photons originated from the signal source, and which photons were

background photons. The second estimator is the “naive” estimator discussed in Sec-

tion 5.1. This estimator filtered photons based on its initial estimate of attitude. All

photons falling within the ±3σ angle of arrival window were included in the range es-

timate, while photons falling outside that window were rejected. Note that both the

naive estimator and the JPDAF estimator started with identical initial attitude esti-

mates. The parameters of the pulsar and of the Monte Carlo simulations performed are

given in Tables 5.1 and 5.2.

The resulting TDOA estimate error and attitude estimate error standard deviations

as a function of initial attitude error are shown in Figures 5.4 to 5.7. The initial

attitude error is defined as the standard deviations of the distribution from which the

initial attitude error was drawn, which was the same for all three axes. The results of

the Monte Carlo simulations reveal that in the case of the naive estimator, performance
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Figure 5.4: TDOA estimate standard deviations, 100 cm2 detector area
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Figure 5.5: TDOA estimate standard deviations, 1000 cm2 detector area
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Figure 5.6: Attitude estimate standard deviations, 100 cm2 detector area
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Figure 5.7: Attitude estimate standard deviations, 1000 cm2 detector area
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Table 5.1: Pulsar Parameters

pulsar
name

area
(
cm2

)
photon
count rate(
photons
second

) pulsar
period
(seconds)

pulsed
fraction

background
count rate(
photons
second

)
B1821-24 1.00e+02 1.30e-02 3.05e-03 9.80e-01 7.22e-01
B1821-24 1.00e+03 1.30e-01 3.05e-03 9.80e-01 7.22e+00
J0437-4715 1.00e+02 1.78e-02 5.76e-03 2.70e-01 7.22e-01
J0437-4715 1.00e+03 1.78e-01 5.76e-03 2.70e-01 7.22e+00

Table 5.2: Monte Carlo Input Parameters

pulsar name runtime (hour) area
(
cm2

)
run count

B1821-24 1 1.00e+02 500
B1821-24 1 1.00e+03 500
J0437-4715 1 1.00e+02 500
J0437-4715 1 1.00e+03 500

dramatically degrades as the initial attitude error increases. This is to be expected, since

the background flux increases as a function of the effective field of view. In the naive

estimator, as initial attitude error increases, the effective field of view also increases,

and consequently the error of the final TDOA solution increases.

On the other hand, the performance of the JPDAF estimator matches very closely

the performance of the unachievable “ideal” estimator. This is because the JPDAF

estimator is able to update the initial poor estimate of attitude based on the photon

AOA measurements ( Figures 5.6 and 5.7).

5.3.2 Chandra Validation Experiment

In order to further verify the efficacy of the estimation techniques presented here, a

series of validation experiments were performed on pulsar observation data from the

x-ray observatory Chandra. Chandra is an x-ray telescope that includes x-ray detectors

with high angular and temporal resolution. Its highly elliptical orbit allows for very long

duration continuous observations of up to 55 hours in length. In these experiments, the

pulsar observation data was used in the algorithms outlined above to estimate the range
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Figure 5.8: In both Chandra observations, at least one static x-ray star was visible in
the detector’s field of view in addition to the pulsar being observed. This allowed for a
full three dimensional attitude solution to be estimated.

Table 5.3: HRC-S Parameters (timing mode)

Effective detector area
(cm2)

Timing resolution (µs) Angular Resolution (arc-
sec)

224 16 0.4

and attitude of the spacecraft. The estimated range and attitude were then compared

to the true range and attitude as reported by the spacecraft.

Of the instruments aboard Chandra, the high-resolution camera (HRC) offered the

best spatial and temporal resolution for the estimation algorithm to be tested, and

some of the relevant parameters of the instrument are outlined in Table 5.3. Due to

the HRC timing error, only a small number of Chandra’s observations contained valid

timing measurements, which limited the number of available observations [65]. Of those

observations, only a small subset were observations of pulsars which could be used for

navigational purposes.

Of the available observations, observations of pulsars PSR B1509-58 and PSR B0540-

6919 were chosen for analysis. These two were chose because they had a number of

favorable characteristics, including:

• Uniform background: The algorithm presented above assumes a uniform back-

ground noise. While the estimator could be modified to account for a spatially

varying background, that capability has not yet been incorporated. As a result,

pulsars with dense, spatially varying backgrounds (for instance the Crab pulsar

113



in the Crab nebula) do not perform well with this estimator.

• Non-binary systems: Currently the estimator does not account for binary pul-

sars and the associated variation in frequency. This capability could be added to

the estimator at a later time.

• Relatively strong signals: The two pulsars in the chosen observations are

among the brighter of the available x-ray pulsars. While still about an order

of magnitude weaker than the Crab pulsar, they offer a signal that is one to two

orders of magnitude stronger than some of their weaker counterparts. While the

algorithms presented here can function with any signal strength, the observation

times needed to converge for a weaker pulsar are generally longer than the available

observation times from Chandra.

The author was unable to locate accurate ephemerides, including accurate phase and

frequency information for the pulsars in the specified observation at the time at which

the observations were taken. This is due to the fact that these pulsars are less stable

than the more accurate millisecond pulsars, so the published ephemerides typically have

a shorter valid time range. This does not necessarily imply that these pulsars would

be unusable for x-ray navigation; only that the spacecraft would have to receive more

frequent ephemeris information in order to use these signals. Due to the lack of accurate

timing information, the observations themselves were used to generate pulse phase and

frequency parameter files. This was done by computing the photons’ true time of arrival

at the solar-system barycenter, using the spacecraft’s true position, and then using those

“barycentered” times to compute the phase and frequency of the pulsar signal during

the observation.

In addition to the pulsars, there were other x-ray bright stars in the field of view of

the HRC in both observations. These signals are possible signal sources, and must also

be included in the data association and state update as possible signal sources. Position

and flux data from the XMM Newton Slew Survey[66] was used to initialize all sources

within the possible field of view.

Using these generated parameters to model the pulsar signal, the observations were

processed using the algorithms outlined above. The algorithms were initialized with

a poor estimate of attitude and a poor initial estimate of velocity (Table 5.4). No
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Table 5.4: Standard deviations on simulation inputs

Target
object

Initial
velocity error
(km/s)

Angular velocity
measurement error
(deg/s)

Initial attitude (deg)

roll pitch yaw

B0540-
6919

1.00e+00 1.00e-04 1.00e+01 1.00e-01 1.00e-01

(Obs. ID
1735,
1736)
B1509-58

1.00e+00 1.00e-04 1.00e+01 1.00e-01 1.00e-01
(Obs. ID
5515)

information was included regarding the orbit model of the spacecraft.

The results of these simulations are shown in Table 5.5, as well as Figures 5.9

and 5.10.

There are a few points which should be noted about these results. The first is that

despite being given no a priori knowledge about a given photon’s source of origin, the

algorithm successfully calculates the change in range of the spacecraft along the line

of sight to the pulsar. As is shown in Figure 5.9, the algorithm is able to compute

the range of the spacecraft to an accuracy of approximately 1000 km. In the context

of deep-space navigation, errors of this order of magnitude are frequently within the

specifications of what the spacecraft needs to successfully complete the mission. As an

example, the recent New Horizons flyby of Pluto required position accuracy of several

thousand kilometers in order to achieve initial target acquisition of Pluto [5].

Second, while the algorithm was initialized with an initial attitude error, the pitch

and yaw estimates quickly converge to the correct value. Additionally, in both obser-

vations, the roll error converges to a constant non-zero value. This is because in both

observations, an additional x-ray star was visible in the field of view, resulting in two

non-collinear vectors and enabling a full three degree of freedom attitude solution, as

shown in Figure 5.8. However, the cataloged coordinates for these sources varied slightly

from the observed positions of the sources, which resulted in a small constant offset in

roll estimate. Nevertheless, these results demonstrate that is possible to converge from
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Table 5.5: Estimate error standard deviations from Chandra validation experiments

Target
object

Runtime
(s)

Range estimate
error standard
deviation (km)

Attitude estimate error
standard deviation (degrees)

roll pitch yaw

B0540-
6919

2.04e+04 6.85e+02 3.84e+00 1.56e-02 6.53e-03

(Obs.
ID 1735,
1736)
B1509-
58

4.52e+04 1.15e+03 1.10e+00 3.98e-03 4.75e-03

(Obs.
ID
5515)

1

an initial attitude error and estimate a full three degree of freedom attitude solution

from x-ray photon observations, in addition to a range estimate.

Nomenclature

Data Association
i Iterator to designate association event

AS The event that a given photon originated from signal source S

bkg Indicates background photon flux

p Indices to designate signal source

N Number of signals being tracked

wA Probability of association event A

Detector
f Field of view of detector (rad)

Ω Solid-angle of detector (steradian)

AD Detector area
(
cm2

)
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Physical Constants

c Speed of light (km/s)

Probability and Statistics

Pr [A] Probability of event A occurring

E [a] The expected value of random variable a

N [µ, P ] A normal distribution with mean µ and variance P

U [l, u] A uniform distribution with lower bound l and upper bound u

fX (x) The probability density function of a random variable X evaluated at x

Signals and Measurements

tobs Total observation time (seconds)

pf Fraction of flux from pulsar that is pulsed

W Full width at half maximum of primary pulsar pulse

λ
(p)
k , λ(p) (t) Expected number of photons at time index k, or expected photon flux

at time t, from signal source p (photons, photons/second)

Tp The period of pulsar p (seconds)

i Photon index

ζi Vector of angle-of-arrival measurements at of photon i

ti Time-of-arrival measurement of photon i (seconds)

Si ith signal source
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State Estimation
ρ
A(S)
t Range to object A, at time t, along line-of-sight vector to source S (km)

rAt Position of A, at time t (km)

qAt Attitude of object A, at time t (radians)

δvAt Error in attitude estimate of object A at time t (radians)

α Azimuth angle (radians)

β Elevation angle (radians)

O Denotes the navigation frame origin

j, k Time-step indices

t Current time (seconds)

τ
A(S)
t Time-difference of arrival of signal from signal source S measured be-

tween vehicle A and navigation frame origin (seconds)

x State vector

P Covariance of state vector

δyt,a Measurement residual for measured scalar quantity a at time t

St,a Variance of measurement residual for measured quantity a at time t

[·]− Indicates a priori value

[·]+ Indicates a posteriori value

·̂ Indicates estimated value

a Indicates vector quantity

a Indicates scalar quantity

Misc
A,B Indices to designate spacecraft(s)

`(S
i) Unit vector pointing towards ith signal source
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Figure 5.9: Range estimate errors
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Figure 5.10: Attitude estimate errors
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this dissertation, we have shown that astrophysical signals of opportunity, in par-

ticular those generated by x-ray pulsars can be used to estimate a full six-degree of

freedom navigation solution, including three degrees of position and three degrees of

attitude. An extensive campaign of Monte Carlo simulations was performed to vali-

date the performance of the algorithms presented here. Additionally, experimentally

collected data from two x-ray observatories, Chandra and Suzaku were used to provide

additional validation of the techniques presented here.

There are many areas of inquiry which must be addressed before pulsar-based x-ray

navigation becomes a reality. In this closing chapter we describe some of these open

questions and present preliminary results. In particular, we discuss the problem of

initializing the filters derived in Chapter 3 and Chapter 5.

6.2 Filter Initialization

In this work, as in every proposed x-ray navigation scheme of which the author is

aware, the navigation technique relies on an accurate measurement of the signal time-

difference of arrival, as outlined in Section 1.2. This method is particularly useful in

the case where the starting position and velocity of the spacecraft are known to a high

degree of accuracy, allowing the spacecraft to simply track the change in TDOA of the
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Figure 6.1: Integer ambiguity. The signal phase φ is estimated by algorithms of Chapters
3 and 5. However, N is unobservable in these algorithms.

pulsar signal to estimate distance traveled from the known starting position.

Another, more challenging problem is the so-called “lost-in-space” problem. This

problem refers to the scenario in which a spacecraft has no prior knowledge of position

or velocity, and is attempting to determine its position in the solar system. There are

many challenges associated with this problem. One such challenge is that it is very

difficult to estimate the TDOA of a pulsar signal if the spacecraft’s velocity is unknown.

In addition, even if the algorithm is able to estimate the TDOA, there remains the

so-called “integer ambiguity” problem. This problem arises from the fact that the pulsar

signal is, by its very nature, periodic. Consequently it is impossible to determine how

many periods have elapsed between the spacecraft and the navigation frame origin. Put

another way, if the time of arrival of a given peak is estimated, there is no way to know

which peak is being measured; there are in fact an infinite number of peaks, which leads

to an infinite number of possible solutions. This problem is illustrated in Figure 6.1.

There are multiple ways in which the integer ambiguity problem could be addressed.

An analogy exists between this problem and the carrier-phase GNSS integer ambiguity

resolution problem. However, it is not clear if the similarity between these problems

is close enough such that the techniques used to address the phase integer ambiguity

problem in GNSS could be applied to this problem as well [67].
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We propose a different approach to solving the integer ambiguity problem. We note

firstly that if the spacecraft had knowledge of its position to an accuracy less than

the period of the pulsar times the speed of light, then the spacecraft could correctly

determine the phase integer value. Rather than use the signal time-of-arrival directly

to estimate position, we propose to instead estimate the velocity and acceleration of

the spacecraft based on the measured photon arrival times. This problem is essentially

equivalent to estimating the frequency or Doppler shift of the pulsar signal due to the

spacecraft velocity, and additionally estimating the rate of change of that Doppler shift.

Because acceleration in space is almost entirely gravitational, a spacecraft’s accel-

eration may be written as a function of its position. Therefore, the acceleration itself

may be used as a measurement of the spacecraft’s position. Given a sufficiently accu-

rate estimate of acceleration, the spacecraft could estimate its position, velocity, and

an approximate orbit model. This information could then be used to perform the more

precise TDOA based positioning.

This proposed method of XNAV has the advantage that it is not limited to extremely

accurate millisecond pulsars. This is significant, because millisecond pulsars are gener-

ally much weaker than other non-millisecond pulsars. This method does not inherently

rely on the pulsar signal being extremely stable, because it only needs to measure the

change in the frequency shift of the signal. Consequently, even if the frequency of the

pulsar varies significantly from the nominal frequency, as long as it is stable during the

course of the observation, the actual of the frequency is not important; all that matters

that the derivative of the frequency observed at the spacecraft be estimated.

6.2.1 Algorithm Development

In outer space, the acceleration of a spacecraft is dominated by gravitational terms.

Gravitational acceleration is a direct function of the spacecraft’s position relative to

celestial bodies. The acceleration may be written using Newton’s law of universal grav-

itation as follows:

aA = f(rA , t) =
∑
i

−Gmi

|rA − ri |3
(
rA − ri

)
(6.1)
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Figure 6.2: Acceleration magnitudes near the Earth-moon system. Orbits shown in
dotted lines. Notable in this figure is the location between the Earth and the Sun at
which the acceleration vector magnitude approaches zero, i.e. where the gravitational
force of Earth is equal to and opposite that of the Sun.

This general relationship between acceleration and position may then be used to

determine the relationship between acceleration along a given vector and position.

aA` = ` · f(rA , t) =
∑
i

` · −Gmi

|rA − ri |3
(
rA − ri

)
(6.2)

Using this expression, we may generate “maps” of acceleration based on position.

Such “maps” is shown in Figures 6.2, 6.3, and 6.4. These figures plot the magnitude of

the acceleration vector as a function of position. Since aA` is a vector we can generate
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Figure 6.3: Acceleration magnitudes in the vicinity of the inner planets. Orbits shown
in dotted lines.

125



-4 -2 0 2 4

km 1e9

-4

-2

0

2

4

k
m

1e9

1.00e-08

1.00e-07

1e-08

1e-07

1e-06

1e-05

A
cc

el
er

a
ti

o
n

m
a
g
n
it

u
d
e
k
m s
2

Figure 6.4: Acceleration magnitudes in the vicinity of the outer planets. Orbits shown
in dotted lines.
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one such map for each component of the vector.

To use this information as a means of estimating position, we must be able to relate

acceleration to a position coordinate. A number of estimation techniques could be used

at this point. For this analysis, we will use a basic Extended Kalman Filter (EKF)

measurement update approach to formulate the measurement update equations. Con-

sequently, the measurement matrix is given by taking the Jacobian of the measurement

equation.

H =
[
∂ aA`
∂ rAx

∂ aA`
∂ rAy

∂ aA`
∂ rAz

]
(6.3a)

=
[
∂`·f(rA ,t)

∂ rAx

∂`·f(rA ,t)
∂ rAy

∂`·f(rA ,t)
∂ rAz

]
(6.3b)

= ` ·
∑
i

Gmi


1

|rA−ri |3
+ 3( rAx − rix )

|rA−ri |5
3( rAx − rix )( rAy − riy )

|rA−ri |5
3( rAx − rix )( rAz − riz )

|rA−ri |5
3( rAx − rix )( rAy − riy )

|rA−ri |5
1

|rA−ri |3
+

3( rAy − riy )

|rA−ri |5
3( rAy − riy )( rAz − riz )

|rA−ri |5

3( rAx − rix )( rAz − riz )

|rA−ri |5
3( rAy − riy )( rAz − riz )

|rA−ri |5
1

|rA−ri |3
+ 3( rAz − riz )

|rA−ri |5


(6.3c)

This measurement matrix is essentially the gravity gradient tensor, projected on the

line of sight to the signal source.

Using this measurement matrix, we may perform an analysis to determine what

level of accuracy of position may be achieved, given a level of accuracy of acceleration

measurement. The Fisher information matrix resulting from a single measurement

update of the state with no prior estimate is given by:

I+ = HTR−1H (6.4)

We may solve this equation for R, if the matrix H is full rank.

R−1 = H−TI+H−1 (6.5)

Using this expression, we could determine a minimum a posteriori estimate accuracy

(I+), and from that requirement determine the needed accuracy of an acceleration

measurement (R−1) to achieve a given position accuracy may be determined. This
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Figure 6.5: Map of acceleration required measurement accuracy near the Earth-moon
system. Orbits shown in dotted lines.

type of analysis is used to generate Figures 6.5, 6.6 and 6.7. These contour plots

show the required acceleration measurement accuracy needed to determine position to

an accuracy of 1000 km. These plots were generated assuming that acceleration was

measured with equal accuracy in three dimensions.

Examination of the figure indicates that acceleration must be measured to a very

high accuracy in order to reach a position estimate of relatively low accuracy, with

position error on the order of 1000 km. The required accuracies range from 1× 10−6 m
s2

near Earth to 1 × 10−14 m
s2

in the outer reaches of the solar system. This makes sense

on an intuitive level. Since the magnitude of the acceleration due to gravity is inversely

proportional to the square of the distance between the objects, the relative change
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Figure 6.6: Map of acceleration required measurement accuracy in the vicinity of the
inner planets. Orbits shown in dotted lines.
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Figure 6.7: Map of acceleration required measurement accuracy in the vicinity of the
outer planets. Orbits shown in dotted lines.
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in gravitational acceleration will diminish, especially far away from massive bodies.

Consequently, an extremely accurate acceleration measurement is needed in order to

determine any sort of useful position information.

It will be noted that this formulation of the measurement equation assumes an

initial estimate of position, since the measurement equation is linearized about that

initial estimate. Consequently, this formulation would not be particularly helpful in the

“lost-in-space” scenario. However, this formulation allows us to develop initial accuracy

requirements on the acceleration measurement, and to develop an idea of what types of

position estimate accuracies could be expected given an acceleration measurement.

In a practical implementation, the position of the spacecraft could be resolved to a

first order by neglecting other planets and only considering the gravity of the sun. This

would allow a range and bearing angle to be determined directly from the magnitude

and direction of the acceleration vector. From there, the EKF formulation could be

used to refine the position estimate further.

It will also be noted that in some cases, the measured acceleration vector could

be matched to more than one unique location. This is particularly likely in the case

that the spacecraft is near a planet. This situation could be addressed by additionally

estimating the gravitational gradient, or by simply comparing the rate of change of the

acceleration vector and the estimated change in the spacecraft’s position.

We then note from Section 3.5.2 that it is possible to estimate the kinematic states of

the spacecraft, including velocity and acceleration, jointly with the correlation estimator

presented in this work.

6.2.2 Monte Carlo Results

To demonstrate the efficacy of the methods proposed here, a series of Monte Carlo sim-

ulations was conducted. The goal of the simulations was to answer whether or not it

is feasible to determine gravitational acceleration to the accuracies needed in order to

measure position. Furthermore, if it is possible, under what conditions might such a

measurement be achieved? Of particular interest in this study was the required obser-

vation time for a detector of a size that could reasonably be flown aboard a spacecraft.

To answer these questions, the Monte Carlo simulations were conducted in the fol-

lowing manner. A model of the pulsar signal based on previous observations was used
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Table 6.1: Signal Parameters

pulsar
name

area
(
cm2

)
photon
count rate(
photons
second

) pulsar
period
(seconds)

pulsed
fraction

background
count rate(
photons
second

)
B1509-58 2.00e+02 2.45e-01 1.51e-01 8.77e-01 1.44e-01
B1509-58 4.00e+02 4.91e-01 1.51e-01 8.77e-01 2.89e-01

to generate photon arrival times, based on the area of the detector.

Additionally, background photon measurements were generated based on empirical

models for hard x-ray background flux [48]. Details of the signals used are given in Table

6.1. These photon arrivals were used in the estimator presented above. The estimator

was initialized with a poor initial estimate of velocity and acceleration. For the purposes

of this study, acceleration and velocity were assumed to be constant. The parameters

of the simulation are given in Table 6.2.

It should be noted that the standard deviation of the initial velocity and acceleration

error includes a large fraction of feasible velocities and accelerations that a spacecraft

could experience, especially during the cruise phase of a mission, which is the phase of

the mission where XNAV techniques would be most likely to be used. Indeed, the range

of velocity errors modeled by the standard deviations encompasses some of the highest

velocities achieved by man-made spacecraft. Similarly, the acceleration error standard

deviation encompasses all but the most extreme accelerations that a spacecraft might

experience, for instance in a close solar flyby. Thus, while an initial estimate was used

to initialize the filter, the errors on those estimates are so large that, for all practical

purposes, the spacecraft is initialized with no initial knowledge of its position or velocity.

This procedure was repeated for a variety of runtimes ranging from hours to days.

For each runtime, a number of simulations was performed, each time with a new set

of generated photon observations and a new set of poor initial estimates. The final

estimates were filtered based on whether the estimator’s standard deviation indicated

it had converged to a solution. Note that this procedure was not a post-simulation

rejection of outliers that could only be performed with knowledge of the true solution.

0Full input files and results may be viewed here (Record ID 20190415-181018, 20190415-191554).
Scripts available on Python Package Index in the Modular Estimator package (pip install modest)
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Table 6.2: Monte Carlo Parameters

pulsar name area
(
cm2

)
initial
velocity std
dev

(
km
s

) initial
acceleration
std dev

(
km
s2

) run count

B1509-58 2.00e+02 2.00e+01 1.00e-02 50
B1509-58 4.00e+02 2.00e+01 1.00e-02 50

Rather, it was a rejection of runs in which the estimator did not believe it had converged

to a meaningful solution yet, based on the estimated covariance matrix values. This

rejection could be performed by the spacecraft in real time; no knowledge of the true

solution was required. The final estimates of acceleration were used to compute the

standard deviation of the estimate error for each run-time. These standard deviations

are shown in Figure 6.8.

The plots show three different sets data points. The solid line plots show the stan-

dard deviation of the acceleration estimate errors. This line reflects how accurate the

estimator’s average acceleration solution was after a given run-time. The dashed lines

show the mean of the estimated standard deviation of acceleration; this reflects how

accurate the estimator believed its solution was after the given run-time. Finally, the

scatter points are the absolute value of error for each run.

These results suggest a few conclusions. First, the results imply that, in the sim-

plified case considered here, it is possible to estimate acceleration to a high degree of

accuracy given a long enough observation time. It will further be noted that, especially

after a 10 day run-time, it is possible to achieve a much lower error than the mean

standard deviation.

6.2.3 Chandra Validation Experiment

In order to further validate the techniques proposed in this section, validation exper-

iments were conducted using x-ray pulsar observation data taken from the Chandra

x-ray observatory. The Chandra observations are well-suited for verifying the perfor-

mance of this technique for a number of reasons. First, Chandra’s High Resolution

Camera (HRC), when operating in timing mode, provides very high-resolution mea-

surements of the photons’ time of arrival, which is the primary input to this filter. The
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Figure 6.8: Standard deviation of acceleration estimate as a function of runtime
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parameters of the HRC were given in Table 5.3.

Second, the orbit of the Chandra spacecraft is highly elliptical (eccentricity =

0.743972). This means that for long periods of time, the spacecraft’s acceleration is

dominated by acceleration due to the sun, with very small contributions from gravi-

tational acceleration due to Earth. This acceleration is similar to the acceleration a

spacecraft would experience in the cruise phase of a mission, which is when these al-

gorithms are most likely to be used. Finally, Chandra observed multiple pulsars with

relatively high x-ray photon fluxes, providing multiple candidate observations for anal-

ysis.

From Chandra’s observations, three observations were selected for analysis. For each

of these observations, the filter described here this section was used on the photon time

of arrival measurements to estimate correlation, velocity, and acceleration. As with

the Monte Carlo analysis in the previous section, the filter was initialized with a poor

initial estimate of velocity and acceleration. Photons were filtered based on their angle

of arrival and Chandra’s reported orientation. This step was taken to help decrease the

number of background photons incorporated into the estimate. The filter was run for

the entire duration of each observation. It should be noted that the durations of the

observations are less than one day, which is not long enough to reach the acceleration

measurement accuracies needed for high accuracy position estimation.

The error between the true and estimated acceleration for each observation is shown

in Figure 6.9. It should be noted that the error plotted is the absolute value of the

error. This is done so that the error can be displayed on a log scale. Additionally, the

estimated standard deviation is plotted in dotted lines.

There are a few results that should be noted from these plots. First, in no observation

does the acceleration reach the level required to achieve even a very poor estimate of

position. Even in the most favorable of scenarios, such as relatively near a large planet,

these acceleration estimates would result in position estimates with accuracies on the

order of 1 million kilometers.

While the observations as presented would not yield a high-accuracy position esti-

mate, it is also notable that the accuracy achieved after a (relatively) short observation

of less than a day matches the predicted accuracy of the Monte Carlo simulations after

a similar run-time. This seems to suggest that, at least upon initial examination, the
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Figure 6.9: Acceleration estimate errors for three Chandra observations
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Monte Carlo simulations are a fairly accurate predictor of the accuracy which could

be achieved given a detector size and observation time. If this is indeed the case, this

suggests that a longer observation, on the order of 10 days, could in fact result in an

estimate with much more reasonable error on the order of 1000 km. It is also notable

that the detector size required to achieve this accuracy is only 400 cm2.

Finally, it is notable that in each case, the estimated standard deviation roughly

matches the magnitude of the error. This indicates that the relationship between photon

TOA measurements and acceleration estimate error is well-modeled.

We believe that these initial studies show that the method discussed here has sig-

nificant potential for addressing the “lost-in-space” problem. The ability to accurately

measure acceleration using pulsars in space, combined with the “gravity-maps” pre-

sented here could be used by the spacecraft to localize its position to an accuracy

sufficient for the spacecraft to solve the integer ambiguity problem, and to track the

phase of much fainter millisecond pulsars using its more accurate velocity estimate.

However, more work is needed to determine the feasibility of this approach, including

Monte Carlo studies that more accurately model the real conditions of a spacecraft on

an interplanetary trajectory. Additionally, we have not considered the effects of addi-

tional timing errors, including but not limited to the Shapiro delay and delays due to

the interstellar medium. Further analysis is needed to determine the magnitude of these

effects on the resulting acceleration estimate error.

6.3 Derivation of Lower Bounds on Error

Literature on XNAV frequently cites a lower bound for the accuracy of an XNAV posi-

tion solution [9]. However in reality, it has been shown through simulation and analysis

of experimentally collected data that this lower bound on error is overly optimistic; that

is, it over-estimates the accuracy of the XNAV position solution. This work indicates

that the failure of the model is due to its inaccurate representation of the non-Gaussian

statistics of the signal [35]. Additional sources of inaccuracy include a failure of the

bound to incorporate the effects of velocity and attitude uncertainty.

The derivation of a more accurate lower bound which addresses these short-comings

and offers a more accurate expression of the expected accuracy of an XNAV solution is
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an potential area of future research. Such a bound would include uncertainties in the

spacecraft’s initial velocity, orbit model, and attitude solution, as well as detector area.

A theoretical bound on the accuracy of an attitude estimate using x-ray signals could

also be derived as a function of the detector’s area, angular resolution, and the drift of

the spacecraft’s angular velocity measurements. Such bounds would be valuable tools

in assessing the performance of XNAV algorithms, and would also help to inform the

design of detectors for XNAV use.

6.4 Detector Hardware Development

The research presented here has assumed to a large degree the existence of an idealized

detector. There is a large opportunity for research into the design of a cost-effective

x-ray detector which is capable of meeting the requirements of the navigation techniques

proposed here. In particular, the algorithms developed in this research could be used

to determine the exact performance specifications needed from a detector to achieve a

given navigational solution accuracy.

6.5 Use of Alternative Signal Sources

As discussed in Section 2.1, pulsars are one of many sources of signals available in space

which could be potentially used for navigation. While pulsars offer a promising means

of navigation, it may also be beneficial to continue exploring other signals that could

be used in addition to pulsar signals. The algorithms needed to use asynchronous sig-

nal sources for navigation would most likely involve cooperative navigation techniques,

which presents a new set of research challenges. In particular, the cooperative spacecraft

would need to a way to share information in an efficient manner while still transmit-

ting the minimum necessary amount of data to successfully navigate. Additionally,

the spacecraft would need to address the problem of decentralized estimation, and the

problem of unknown correlations between errors.
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Nomenclature

Signals and Measurements

Si ith signal source

State Estimation
rAt Position of A, at time t (km)

aAt Acceleration of object A, at time t
(
km/s2

)
t Current time (seconds)

x State vector

yt,a Measurement of scalar quantity a

H Measurement update matrix for measured quantity a

vt,a Scalar measurement error of measured quantity a at time t

Rt,a Variance of measurement noise in measured quantity a

[·]− Indicates a priori value

[·]+ Indicates a posteriori value

·̂ Indicates estimated value

a Indicates vector quantity

a Indicates scalar quantity

Misc
A,B Indices to designate spacecraft(s)

`(S
i) Unit vector pointing towards ith signal source
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A Chekhtman, C C Cheung, J Chiang, A N Cillis, S Ciprini, R Claus, J Cohen-

Tanugi, J Conrad, R Corbet, D S Davis, M Deklotz, P R den Hartog, C D Dermer,

A de Angelis, A de Luca, F de Palma, S W Digel, M Dormody, E do Couto e Silva,

P S Drell, R Dubois, D Dumora, D Fabiani, C Farnier, C Favuzzi, S J Fegan, E C

Ferrara, W B Focke, P Fortin, M Frailis, Y Fukazawa, S Funk, P Fusco, F Gargano,

D Gasparrini, N Gehrels, S Germani, G Giavitto, B Giebels, N Giglietto, P Giommi,

F Giordano, M Giroletti, T Glanzman, G Godfrey, I A Grenier, M.-H. Grondin, J E

Grove, L Guillemot, S Guiriec, M Gustafsson, D Hadasch, Y Hanabata, A K Hard-

ing, M Hayashida, E Hays, S E Healey, A B Hill, D Horan, R E Hughes, G Iafrate,
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Appendix A

Alternate Derivation of NHEP

Equation (2.18a) gives the analytical expression for the PDF of a nonhomogeneous

Poisson process, and was derived based on the expected number of photons generated

by an NHEP over a given time period. Here, we present an alternate derivation which

gives an intuitive understanding of the NHEP and also provides a straight-forward

method of simulating such a process.

We begin by noting that the non-homogeneous Poisson process may be thought of

as the combination of a homogeneous Poisson process and a Bernoulli random variable,

in which photons are generated at a constant flux, λ∗ ≤ maxλ (t), and are deleted with

probability 1 − λ∗

λ(t) [63]. Alternatively, we could say that photons are generated at

constant flux λ∗, and transmitted with probability λ∗

λ(t) .

Such a process could be physically realized with the setup illustrated in Figure A.1.

Photon source

Variable “transparency” window

λ = λ∗

α(t) = λ(t)
λ∗

E
[
Λ̃k

]
= α(t)λ∗∆T = λ (t) ∆TE

[
Λ̃
]

= λ∗∆T

Figure A.1: Generation of NHPP by thinning
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It is intuitively clear that such a process would result in photons governed by the NHPP

with flux λ (t). We now show this analytically.

To demonstrate the equivalency between two distributions, we must show that the

distributions have the same CDF. Consequently, we want to compute the probability

that the first photon generated by the process described above will be less than or equal

to a given time. To start, we define the following:

• NT is the number of photons generated by the “thinned,” non-homogeneous ex-

ponential process over a given time-interval, T

• N∗T is the number of photons generated by the “un-thinned,” homogeneous expo-

nential process over a given time-interval, T

• pt is the Bernoulli random variable at time t. If it pt = 0, the event at time t (if

present) is deleted. If pt = 1, the event at time t (if present) is not deleted

As before, we note that the following is true:

Pr [t ≤ t|λ (t)] = 1−Pr [t > t|λ (t)] (A.1)

So, if we can compute the probability that the first arrival time will be greater than

some time t, we can compute the CDF for this process. To compute this probability, we

need to find the probability of no photons arriving at each differential time-step between

s and t. (For convenience in this derivation we will let s = 0.)

We note that, at some infinitely small time-step, ∆t, no photons occur if one of the

following two events occur:

• No event is generated by the homogeneous Poisson process, i.e. N∆t = 0, or

• The Bernoulli random variable is zero, i.e. p∆t = 0

Since either condition is sufficient for no photon to be generated by the combination

of the two process, we may write:
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Pr [N∆T = 0] = Pr [N∆t = 0 ∪ p∆t = 0]

= Pr [N∆t = 0] + Pr [p∆t = 0]−Pr [N∆t = 0] Pr [p∆t = 0]

= e−λ
∗∆t +

(
1− λ (t)

λ∗

)
− e−λ∗∆t

(
1− λ (t)

λ∗

)
= 1− λ∗

λ (t)
+ e−λ

∗∆tλ (t)

λ∗

= 1−
(

1− e−λ∗∆t
) λ (t)

λ∗

(A.2)

This expression is only valid for an infinitesimally small time-step, such that the

time-varying flux λ (t) is constant. To compute the probability that no photon arrives

over the interval t, we must compute the probability that no photons arrive at each

infinitesimal time-step.

Pr [t > t|λ (t)] = Pr [N∆T1 = 0 ∩N∆T2 = 0 . . . ∩N∆TN = 0]

= Pr [N∆T1 = 0] Pr [N∆T2 = 0] . . .Pr [N∆TN = 0]

= lim
∆T→0

t
∆T∏
i=0

Pr [N∆T = 0]

= lim
∆T→0

t
∆T∏
i=0

(
1−

(
1− e−λ∗∆t

) λ (i∆t)

λ∗

)
(A.3)

To proceed from here, we recall that the Taylor series for ex is given by

ex = 1 + x+
x2

2!
+
x3

3!
+ ... (A.4)

Consequently, we can approximate ex near x = 0 as ex ≈ 1+x+O(x2). Since in this

case, we are taking the limit as the exponent goes to zero, the error in the approximation

also goes to zero. Therefore the probability may be re-written as:
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Pr [t > t|λ (t)] = lim
∆T→0

t
∆T∏
i=0

(
1− (1− (1− λ∗∆t)) λ (i∆t)

λ∗

)

= lim
∆T→0

t
∆T∏
i=0

(
1− λ∗λ (i∆t) ∆t

λ∗

)

= lim
∆T→0

t
∆T∏
i=0

(1− λ (i∆t) ∆t)

(A.5)

Recalling rules for logarithms and exponents, this expression may be rewritten as

an infinite sum:

Pr [t > t|λ (t)] = exp

 lim
∆T→0

ln

t
∆T∏
i=0

(1− λ (i∆t) ∆t)


= exp

 lim
∆T→0

t
∆T∑
i=0

ln (1− λ (i∆t) ∆t)


(A.6)

Once again, we make use of the Taylor series, but this time for natural logs. Note

that:

ln(1− x) = −x− x2

2
− x3

3
− ... ≈ −x+O(x2) (A.7)

Again, since we are evaluating the limit as x→ 0, the O(x2) error term also goes to

zero. Therefore, the expression may be written again as:

Pr [t > t|λ (t)] = exp

 lim
∆T→0

t
∆T∑
i=0

−λ (i∆t) ∆t

 (A.8)

The argument of the exponent in this expression is the Riemann sum for the integral,
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which by definition is:

lim
∆T→0

t
∆T∑
i=0

−λ (i∆t) ∆t = −
∫ t

0
λ (t) dt (A.9)

And so:

Pr [t > t|λ (t)] = e−
∫ t

0 λ(t)dt (A.10)

And so, we arrive at the same CDF as in Equation (2.17), which implies that the

process described here is governed by the same probability distribution as the NHEP

derived in Section 2.2.3.

Pr [t ≤ t|λ (t)] = 1− e−
∫ t

0 λ(t)dt (A.11)

The preceding derivation is useful not only because it presents an intuitive under-

standing of the NHPP and NHEP, but also because it leads to a simple method for

simulating the arrival times generated by such a process. It is straight-forward to gen-

erate numbers from an homogeneous exponential distribution and Bernoulli distribution,

which may then be used to generate NHEP arrival times, even in the case where the

function λ (t) is not readily available.

Nomenclature

Data Association

p Indices to designate signal source

Probability and Statistics

Pr [A] Probability of event A occurring

E [a] The expected value of random variable a
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Signals and Measurements

Λ̃A,k The number of photons measured at location A over time-step k

(Photons)

λ
(p)
k , λ(p) (t) Expected number of photons at time index k, or expected photon flux

at time t, from signal source p (photons, photons/second)

ti Time-of-arrival measurement of photon i (seconds)

State Estimation
j, k Time-step indices

t Current time (seconds)

x State vector

[·]− Indicates a priori value

[·]+ Indicates a posteriori value

·̂ Indicates estimated value

a Indicates vector quantity

a Indicates scalar quantity

Misc

i Iterator to designate summation index
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